Any isometry between the spheres of 2-dimensional Banach spaces is linear

Javier Cabello Sánchez

Departamento de Matemáticas and Instituto de Investigación en Matemáticas, Universidad de Extremadura

> Uniwersytet Jagielloński w Krakowie, Środa 5 Maj, 2021.

Isometries in normed spaces Traditional approach Another way to see the Problem in finite-dimensional spaces

Tingley's problem

We will deal with this question, that appeared in [8]:

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $\tau : S_X \to S_Y$ an onto isometry. Is τ the restriction of some linear isometry $\tilde{\tau} : X \to Y$?

Mazur-Ulam Theorem

The first great result about the isometries in normed spaces gives a positive answer to the same Problem when the onto isometry is defined on the whole space (see [7]). Namely:

Mazur-Ulam Theorem (1932): Every onto isometry $\tilde{\tau} : X \to Y$ between normed spaces is affine. So, $\tilde{\tau}$ is linear whenever $\tilde{\tau}(0) = 0$.

Mankiewicz's Theorem

A huge advance about isometries between normed spaces was Mankiewicz's Theorem, and it is, to the best of our knowledge, the first Theorem about extension of isometries (see [6]):

Mankiewicz's Theorem (1972): Let X and Y be normed spaces, $F_X \subset X$ and $F_Y \subset Y$ be closed bodies. If $\tau : F_X \to F_Y$ is an onto isometry, then it is the restriction of an affine isometry $\tilde{\tau} : X \to Y$.

Mazur-Ulam Property

Our problem is to determine whether every onto isometry between spheres extends or not. A closely related problem is whether, fixing a space $(X, \|\cdot\|_X)$, every onto isometry $\tau : S_X \to S_Y$ extends or not. This has led to:

Definition: A normed space $(X, \|\cdot\|_X)$ has the Mazur-Ulam Property if every onto isometry $\tau : S_X \to S_Y$ extends to a (linear, onto) isometry $\tilde{\tau} : X \to Y$.

Extension of isometries

A weaker related problem is to find conditions that ensure that, for some kind of spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$, every onto isometry $\tau : S_X \to S_Y$ is the restriction of some linear isometry $\tilde{\tau} : X \to Y$. As for example:

Theorem ([4]): If we consider \mathbb{R}^2 endowed with two *p*-norms, say $\|\cdot\|_X = \|\cdot\|_p$ and $\|\cdot\|_Y = \|\cdot\|_q$ with $p, q \in (1, \infty)$, and there is an isometry $\tau : S_X \to S_Y$, then q = p and τ is either the identity, a symmetry or a rotation. Anyway, τ extends to a linear isometry defined on *X*.

Tingley's problem again

What we are dealing with is, thank to Mazur, Ulam and Mankiewicz, equivalent to each of the following:

Question: Is every onto isometry $\tau : S_X \to S_Y$ the restriction of an isometry $\tilde{\tau} : (X, \| \cdot \|_X) \to (Y, \| \cdot \|_Y)$?

Question: Is every onto isometry $\tau : S_X \to S_Y$ the restriction of an isometry $\tau : B_X \to B_Y$?

Isometries in normed spaces Traditional approach Another way to see the Problem in finite-dimensional spaces

The natural extension

The first idea that arose when dealing with Tingley's Problem was quite simple:

If $\tau : S_X \to S_Y$ has a linear extension $\tilde{\tau} : X \to Y$, of course this extension must fulfil $\tilde{\tau}(\lambda x) = \lambda \tau(x)$ for every $\lambda \ge 0$. So, the idea is to take this *natural extension* $\tilde{\tau}$ and prove that it is linear.

Some results obtained with this approach

Theorem: Let $\tau : S_X \to S_Y$ be a surjective isometry between the unit spheres of two compact C^* -algebras. Then there exists a (unique) surjective real linear isometry $\tilde{\tau} : X \to Y$ such that $\tilde{\tau}(x) = \tau(x)$ for every $x \in S_X$.

Theorem: Let $\tau : S_X \to S_Y$ be a surjective isometry between the unit spheres of two von Neumann algebras. Then there exists a surjective real linear isometry $\tilde{\tau} : X \to Y$ that restricted to S_X is τ .

Theorem: Let $(H_i)_{i \in I}$ and $(K_j)_{j \in J}$ be two families of complex Hilbert spaces. Suppose $\Delta : S(\bigoplus_{j}^{I_{\infty}} B(K_j)) \to S(\bigoplus_{i}^{I_{\infty}} B(H_i))$ is a surjective isometry. Then there exists a real linear isometry

$$T:\bigoplus_{j}^{l_{\infty}}B(K_{j})\to\bigoplus_{i}^{l_{\infty}}B(H_{i})$$

satisfying $T_{|S(E)} = \Delta$.

Restriction of linear means linear

Let $\tau : S_X \to S_Y$ be any map. If is it the restriction of some linear map $\tilde{\tau} : X \to Y$, in particular $\tau(\lambda x + \lambda' x')$ must be $\lambda \tau(x) + \lambda' \tau(x')$ whenever $x, x', \lambda x + \lambda' x' \in S_X$.

Linear isometric isomorphisms from \mathbb{R}^n

We may take coordinates. Namely, given an *n*-dimensional space $(X, \|\cdot\|_X)$ and a basis $\mathcal{B}_X = \{x_1, \ldots, x_n\} \subset X$, we may identify (X, \mathcal{B}_X) with \mathbb{R}^n endowed with its usual basis $\mathcal{B}_n = \{e_1, \ldots, e_n\}$ by defining a norm in \mathbb{R}^n as

$$\|(\lambda_1,\ldots,\lambda_n)\|'_X=\|\lambda_1x_1+\ldots+\lambda_nx_n\|_X$$

and $\phi_X : \mathbb{R}^n \to X$ given by

$$\phi_X(\lambda_1,\ldots,\lambda_n)=\lambda_1x_1+\ldots+\lambda_nx_n.$$

Linear isometric automorphisms of \mathbb{R}^n

If $\mathcal{B}_X = \{x_1, \ldots, x_n\} \subset S_X$ is a basis, $\tau : S_X \to S_Y$ is an isometry and $\mathcal{B}_Y = \{\tau(x_1), \ldots, \tau(x_n)\} \subset S_Y$ is also a basis, then we may identify both (X, \mathcal{B}_X) and (Y, \mathcal{B}_Y) with \mathbb{R}^n by means of linear isometries and we have an onto isometry τ' between the spheres (in \mathbb{R}^n) of $\|\cdot\|'_X$ and $\|\cdot\|'_Y$ that leaves fixed every $e_i \in \mathcal{B}_n$, i.e.,

 $au'(1,0,\ldots,0)=(1,0,\ldots,0), \quad au'(0,1,\ldots,0)=(0,1,\ldots,0)\ldots$

This means that τ and τ' are linear if and only if τ' is the identity.

Isometries in normed spaces Traditional approach Another way to see the Problem in finite-dimensional spaces

Is τ' the identity?

The way that we approach Tingley's Problem is: **Question**: Let $(\mathbb{R}^n, \|\cdot\|_X)$ and $(\mathbb{R}^n, \|\cdot\|_Y)$ be normed spaces such that there is an isometry $\tau : S_X \subset \mathbb{R}^n \to S_Y \subset \mathbb{R}^n$ between their spheres such that $\tau(e_i) = e_i$ for every $e_i \in \mathcal{B}_n$. Is τ the identity? In particular, are S_X and S_Y the same subset of \mathbb{R}^n ?

Spheres and their geometry

For every onto isometry defined on the sphere S_X of a normed space to be linear it is sufficient that S_X has enough metric invariants to distinguish it from every other sphere.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces

Case 5: Tarás' ending: smooth but not absolutely smooth

Hypotheses and notations

We will suppose that

- X and Y are two-dimensional spaces,
- $au : S_X o S_Y$ is an isometry,

• $\mathbf{r}_X : \mathbb{R} \to S_X$ and $\mathbf{r}_Y : \mathbb{R} \to S_Y$ are arc-length

parameterizations of S_X and S_Y such that $\mathbf{r}_Y(t) = \tau(\mathbf{r}_X(t))$ for every $t \in \mathbb{R}$.

• L is the half-length of S_X (of S_Y , too).

By Tingley's result, we have $\tau(-x) = -\tau(x)$ for every $x \in S_X$.

 Introduction
 Case 1: Non strictly convex spaces

 Case 2: Tarás Banakh's differential equation
 Case 3: Piecewise smooth spaces

 Two-dimensional spaces
 Case 4: Non smooth spaces

 Case 5: Tarás' ending: smooth but not absolutely smooth

Our goal

We will show that when we take coordinates with respect to appropriate bases $\mathcal{B}_X = \{x, x'\} \subset S_X$ and $\mathcal{B}_Y = \{y, y'\} \subset S_Y$, τ is the identity.

Equivalently, that $\tau(\lambda x + \mu x') = \lambda y + \mu y'$ for every λ, μ such that $\lambda x + \mu x' \in S_X$.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Preliminar observations

Once we have taken coordinates, we may consider the subset $S_X \cap S_Y$, that is always closed in \mathbb{R}^2 and also in S_X . As S_X is conected, if $S_X \cap S_Y$ is open in S_X then $S_X \cap S_Y = S_X$, i.e., $S_Y = S_X$.

Thanks to any of the versions of the Monotonicity Lemma, we get that every $\overline{x} \in S_X$ is determined by the distances

$$\|\overline{x} - x\|_{X}, \|\overline{x} - x'\|_{X}, \|\overline{x} + x\|_{X}, \|\overline{x} + x'\|_{X}.$$

This implies that the only *autoisometry* $\tau : S_X \to S_X$ such that $\tau(x) = x, \tau(x') = x'$ is the identity. Joining all these facts, we obtain that if $S_X \cap S_Y$ is open in S_X then τ is the identity.

Case 1: Non strictly convex spaces

Case 2: Tarás Banakh's differential equation

Case 3: Piecewise smooth spaces

- Case 4: Non smooth spaces
- Case 5: Tarás' ending: smooth but not absolutely smooth

Segments

This case has been solved in [4]. Let, for each $x \in S_X$, $\mathcal{D}(x) = \{x' \in S_X : ||x - x'||_X = 2\}$. This subset consists of the segments in S_X that contain -x. As $\mathcal{D}(x)$ is defined by means of distances between points of S_X , one has $\mathcal{D}(\tau(x)) = \tau(\mathcal{D}(x))$. So, every segment containing x goes to another segment

containing $\tau(x)$. In particular, the amount of segments in S_X is the same as in S_Y .

Case 1: Non strictly convex spaces

Case 2: Tarás Banakh's differential equation

Case 3: Piecewise smooth spaces

Case 4: Non smooth spaces

Case 5: Tarás' ending: smooth but not absolutely smooth

How to solve this case

Take some segments $[x_1, x_2] \subset S_X$ and $[y_1, y_2] \subset S_Y$, where $y_1 = \tau(x_1), y_2 = \tau(x_2)$.

Right now, I need to draw a little.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' ending: smooth but not absolutely smooth

The natural parameterization

This case has been solved in [2].

I am very lucky because Tarás already gave a seminar to explain this case.

Suppose that the norms are strictly convex and smooth and, moreover, the natural parameterizations' derivatives are not only continuous but *absolutely continuous*.

This is exactly what we need to ensure that $\mathbf{r}'_X(t)$ exists at every $t \in \mathbb{R}$, and that $\mathbf{r}'_X(t) = \int_0^t \mathbf{r}''_X(s) \, \mathrm{d}s + \mathbf{r}'_X(0)$. (Analogously with \mathbf{r}'_Y).

Given S_X and S_Y , and the natural parameterizations $\mathbf{r}_X, \mathbf{r}_Y$, we may take the bases $\mathcal{B}_X = {\mathbf{r}_X(0), \mathbf{r}'_X(0)}$ and $\mathcal{B}_Y = {\mathbf{r}_Y(0), \mathbf{r}'_Y(0)}$.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' ending: smooth but not absolutely smooth

How to use a differential equation

The proof of the fact that, under these circumstances, $\mathbf{r}_X(t) = \mathbf{r}_Y(t)$ for every $t \in \mathbb{R}$ comes from the following:

• As $\mathbf{r}_X(t)$ and $\mathbf{r}'_X(t)$ are linearly independent, for each t there exist unique $\rho_X(t), \sigma_X(t); \rho_Y(t), \sigma_Y(t) \in \mathbb{R}$ such that

 $\mathbf{r}_X''(t) = -\rho_X(t)\mathbf{r}_X'(t) + \sigma_X(t)\mathbf{r}_X(t); \quad \mathbf{r}_Y''(t) = -\rho_Y(t)\mathbf{r}_Y'(t) + \sigma_Y(t)\mathbf{r}_Y(t).$

• Given well-behaved functions $\rho_X, \sigma_X, \rho_Y, \sigma_Y$, there is exactly one solution $(\mathbf{r}_X(t) \text{ and } \mathbf{r}_Y(t))$ to each differential equation. This is so because we have the right amount of initial conditions: $\mathbf{r}_X(0) = (1,0) = \mathbf{r}_Y(0), \mathbf{r}'_X(0) = (0,1), \mathbf{r}'_Y(0).$

• The functions ρ_X, σ_X can be computed by means of distances between points of S_X !! So, we obtain $\rho_Y = \rho_X, \sigma_Y = \sigma_X$ and the uniqueness of the solution gives $\mathbf{r}_X = \mathbf{r}_Y$.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

Recognizing non-smoothness from close

This case has been solved in [5].

Given $x \in S_X$, the following are mutually equivalent:

- The norm $\|\cdot\|_X$ is differentiable at x.
- The sphere S_X is differentiable at x.
- If $\mathbf{r}_X(t_0) = x$ (and $\mathbf{r}_X(t_0 + L) = -x$), then the map
- $t\mapsto \|\mathbf{r}_X(t_0-t)-\mathbf{r}_X(t_0+L+t)\|_X$ is differentiable at t=0.

The third condition is preserved by the isometry τ , so S_X is differentiable at x if and only if S_Y is differentiable at $\tau(x)$.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' ending: smooth but not absolutely smooth

Partial derivatives and linear combinations

Let $x = \mathbf{r}_X(t_0) \in S_X$ and take the basis $\mathcal{B}_X = \{-\mathbf{r}'_X(t_0), x\}$. Take, furthermore, some $a \in S_X$ and $b = a + \lambda x \in S_X$.

With $F(\alpha, \beta) = ||b + \alpha e_1 + \beta e_2 - a||_X$, we have $\frac{\partial F}{\partial e_1}(0, 0) = 0$; $\frac{\partial F}{\partial e_2}(0, 0) = 1$. So, if the derivative of \mathbf{r}_X at b is (b'_1, b'_2) then $\frac{d}{dt}||b + t(b'_1, b'_2) - a||_X(0) = b'_2$. So, b'_2 is the speed of growing of the distance to a when \mathbf{r}_X passes through b.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' ending: smooth but not absolutely smooth

Recognizing non-smoothness from far

If S_X is not differentiable at x, then we have something like this:

As before, we have that b'_2 is the rate of growth of $||\mathbf{r}_X(t) - a||_X$ when $\mathbf{r}_X(t)$ approaches *b* from right and down. But this is not how $||\mathbf{r}_X(t) - a||_X$ grows when $\mathbf{r}_X(t)$ approaches *b* from left and above. This means that we can recognize when $(a - b)/||a - b||_X$ is a point of differentiability of S_X , at least when S_X is smooth in *b*.

A D N A D N A D N A D N B D

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

Special directions

A point $x \in S_X$ is called *special* if for any bijective isometry $\tau : S_X \to S_Y$ to the unit sphere of a Banach space Y and any points $y, z \in S_X$ with $y - z = ||y - z|| \cdot x$ we have

$$\tau(y) - \tau(z) = \|\tau(y) - \tau(z)\| \cdot \tau(x) = \|y - z\| \cdot \tau(x).$$

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' ending: smooth but not absolutely smooth

When there is no basis

In this case, when there is exactly one pair of nondifferentiability points x, -x in S_X , we have that x is special. Moreover, we may compute the change of coordinates needed to transform the basis that makes S_X arrive at x = (0, 1) horizontally into the basis that makes S_X leave x = (0, 1) horizontally.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

The linear isometry (a.k.a. change of bases)

If *T* is the change of bases from $\mathcal{B}_X = \{\mathbf{r}_{-,X}\}$ to $\overline{\mathcal{B}}_X = \{\mathbf{r}_{+,X}\}$ and as *A* is its matrix with respect to \mathcal{B}_X then (as T(0,1) = (0,1)) we have $A = \begin{pmatrix} \alpha & 0 \\ \beta & 1 \end{pmatrix}$. Moreover, we can determine α and β by means of distances, so the change of bases is the same for S_X and S_Y .

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces

Case 5: Tarás' ending: smooth but not absolutely smooth

The second coordinates are known

To finish this sub-case, denoting (b'_1, b'_2) the derivative of \mathbf{r}_X at b and $T(b'_1, b'_2) = (\overline{b}'_1, \overline{b}'_2)$, we can determine b'_2 and \overline{b}'_2 . Namely, b'_2 is the speed of growth of $\|\mathbf{r}_X(t) - a\|$ when $\mathbf{r}_X(t)$ approaches b by the right down side and \overline{b}'_2 is the same but approaching b from left and above.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

Some basic linear algebra

We have $(\overline{b}'_1, \overline{b}'_2) = (\alpha b'_1, \beta b'_1 + b'_2)$ and b'_2 , \overline{b}'_2 and β are known, so we can determine b'_1, \overline{b}'_1 .

This means that we know both coordinates of the derivative of every point of S_X and these coordinates are the same in S_Y . With this, the result follows (but, surprisingly, only when there is exactly one pair of nondifferentiability points in S_X).

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

The importance of finiteness

We know that $(\tau(a) - \tau(b))/||\tau(a) - \tau(b)||_Y$ is a nondifferentiability point of S_Y if and only if S_X is not smooth in $(a - b)/||a - b||_X$. We are in the Case 3: Piecewise smooth spaces. This means that there are only finitely many points of nondifferentiability in S_X (in S_Y , too). Under these conditions, every nondifferentiability pont in S_X is special.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' endine: smooth but not absolutely smooth

When there is a basis

If $e_1, e_2 \in S_X$ are linearly independent and both of them are *special*, then we can take coordinates with respect to $\mathcal{B}_X = \{e_1, e_2\}$ and $\mathcal{B}_Y = \{\tau(e_1), \tau(e_2)\}$ and get

$$x - x' = (\lambda, 0) \iff \tau(x) - \tau(x') = (\lambda, 0);$$

 $x - x' = (0, \mu) \iff \tau(x) - \tau(x') = (0, \mu).$

With due care, this is enough to prove the result in this case: every isometry $\tau : S_X \to S_Y$ is linear.

 Introduction
 Case 1: Non strictly convex spaces

 Two-dimensional spaces
 Case 2: Tarás Banakh's differential equation

 Case 3: Piecewise smooth spaces
 Case 4: Non smooth spaces

 Case 5: Tarás' ending: smooth but not absolutely smooth

Some surprise

In this setting, the result is even more general:

Theorem: If S_X and S_Y are piecewise differentiable, $C_X \subset X$ and $C_Y \subset Y$ are piecewise differentiable convex Jordan curves and $\tau : C_X \to C_Y$ is an isometry, then τ is affine and X and Y are linearly isometric, provided there is a basis $x, x' \in S_X$ of nondifferentiability points.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces

Case 5: Tarás' ending: smooth but not absolutely smooth

A brilliant idea

This case has been solved in [3].

There was a clear path towards the result in non-smooth spaces, and then I had the most clever idea I have ever had as a mathematician... Ask Tarás Banakh for help.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces

Case 5: Tarás' ending: smooth but not absolutely smooth

The lack of importance of finiteness

It turns out that Tarás found a way to measure the angles in the spheres (jumps of \mathbf{r}'_X) and this was enough to show that every nondifferentiability point of every two-dimensional sphere is special.

Case 1: Non strictly convex spaces Case 2: Tarás Banakh's differential equation Case 3: Piecewise smooth spaces Case 4: Non smooth spaces Case 5: Tarás' ending: smooth but not absolutely smooth

S_X is C^1 but \mathbf{r}'_X is not absolutely continuous

This case has been solved in [1].

The idea is that the jumps of \mathbf{r}''_X can also be measured by means of the distances. So, every point where S_X is not twice differentiable is special and the result holds... because there are infinitely many points where \mathbf{r}''_X does not exist.

It is not exactly this way, but it is close.

I hope I'll be as lucky with this case as with the second one and Tarás will give a seminar to explain it, too.

Thank you very much for your attention.

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへの 36 / 36

		I	
	-		

T. Banakh.

Every 2-dimensional Banach space has the Mazur-Ulam property, preprint.

T. Banakh.

Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear. *Journal of Mathematical Analysis and Applications*, 500(1):125104, 2021.

T. Banakh and J. Cabello Sánchez.

Every non-smooth 2-dimensional Banach space has the Mazur–Ulam property. *Linear Algebra and its Applications*, 625:1–19, 2021.

J. Cabello Sánchez.

A reflection on Tingley's problem and some applications. Journal of Mathematical Analysis and Applications, 476(2):319 – 336, 2019.

J. Cabello Sánchez.

Linearity of isometries between convex Jordan curves. Linear Algebra and its Applications, 621:1–17, 2021.

P. Mankiewicz.

On extension of isometries in normed linear spaces. Bulletin de l'Académie Polonaise des Sciences, 20:367 – 371, 1972.

S. Mazur and S. Ulam.

Sur les transformations isométriques d'espaces vectoriels, normés. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 194:946–948, 1932.

D. Tingley.

Isometries of the unit sphere. Geometriae Dedicata, 22(3):371-378, 1987.