ANY ISOMETRY BETWEEN THE SPHERES OF 2-DIMENSIONAL BANACH SPACES IS LINEAR

Javier Cabello Sánchez

Departamento de Matemáticas and Instituto de Investigación en Matemáticas, Universidad de Extremadura

Uniwersytet Jagielloński w Krakowie, Środa 5 Maj, 2021.

Tingley's problem

We will deal with this question, that appeared in [8]:
Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces and $\tau: S_{X} \rightarrow S_{Y}$ an onto isometry. Is τ the restriction of some linear isometry $\tilde{\tau}: X \rightarrow Y$?

Mazur-Ulam Theorem

The first great result about the isometries in normed spaces gives a positive answer to the same Problem when the onto isometry is defined on the whole space (see [7]). Namely:

Mazur-Ulam Theorem (1932): Every onto isometry $\widetilde{\tau}: X \rightarrow Y$ between normed spaces is affine. So, $\widetilde{\tau}$ is linear whenever $\widetilde{\tau}(0)=0$.

Mankiewicz's Theorem

A huge advance about isometries between normed spaces was Mankiewicz's Theorem, and it is, to the best of our knowledge, the first Theorem about extension of isometries (see [6]):

Mankiewicz's Theorem (1972): Let X and Y be normed spaces, $F_{X} \subset X$ and $F_{Y} \subset Y$ be closed bodies. If $\tau: F_{X} \rightarrow F_{Y}$ is an onto isometry, then it is the restriction of an affine isometry $\widetilde{\tau}: X \rightarrow Y$.

Mazur-Ulam Property

Our problem is to determine whether every onto isometry between spheres extends or not. A closely related problem is whether, fixing a space $\left(X,\|\cdot\|_{X}\right)$, every onto isometry $\tau: S_{X} \rightarrow S_{Y}$ extends or not. This has led to:

Definition: A normed space $\left(X,\|\cdot\|_{X}\right)$ has the Mazur-Ulam Property if every onto isometry $\tau: S_{X} \rightarrow S_{Y}$ extends to a (linear, onto) isometry $\widetilde{\tau}: X \rightarrow Y$.

Extension of isometries

A weaker related problem is to find conditions that ensure that, for some kind of spaces $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$, every onto isometry $\tau: S_{X} \rightarrow S_{Y}$ is the restriction of some linear isometry $\widetilde{\tau}: X \rightarrow Y$. As for example:

Theorem ([4]): If we consider \mathbb{R}^{2} endowed with two p-norms, say $\|\cdot\|_{X}=\|\cdot\|_{p}$ and $\|\cdot\|_{Y}=\|\cdot\|_{q}$ with $p, q \in(1, \infty)$, and there is an isometry $\tau: S_{X} \rightarrow S_{Y}$, then $q=p$ and τ is either the identity, a symmetry or a rotation. Anyway, τ extends to a linear isometry defined on X.

Tingley's problem again

What we are dealing with is, thank to Mazur, Ulam and Mankiewicz, equivalent to each of the following:

Question: Is every onto isometry $\tau: S_{X} \rightarrow S_{Y}$ the restriction of an isometry $\widetilde{\tau}:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$?

Question: Is every onto isometry $\tau: S_{X} \rightarrow S_{Y}$ the restriction of an isometry $\tau: B_{X} \rightarrow B_{Y}$?

The natural extension

The first idea that arose when dealing with Tingley's Problem was quite simple:
If $\tau: S_{X} \rightarrow S_{Y}$ has a linear extension $\widetilde{\tau}: X \rightarrow Y$, of course this extension must fulfil $\widetilde{\tau}(\lambda x)=\lambda \tau(x)$ for every $\lambda \geq 0$. So, the idea is to take this natural extension $\widetilde{\tau}$ and prove that it is linear.

Some results obtained with this approach

Theorem: Let $\tau: S_{X} \rightarrow S_{Y}$ be a surjective isometry between the unit spheres of two compact C^{*}-algebras. Then there exists a (unique) surjective real linear isometry $\widetilde{\tau}: X \rightarrow Y$ such that $\widetilde{\tau}(x)=\tau(x)$ for every $x \in S_{X}$.
Theorem: Let $\tau: S_{X} \rightarrow S_{Y}$ be a surjective isometry between the unit spheres of two von Neumann algebras. Then there exists a surjective real linear isometry $\widetilde{\tau}: X \rightarrow Y$ that restricted to S_{X} is τ.
Theorem: Let $\left(H_{i}\right)_{i \in I}$ and $\left(K_{j}\right)_{j \in J}$ be two families of complex Hilbert spaces. Suppose $\Delta: S\left(\bigoplus_{j}^{\prime \infty} B\left(K_{j}\right)\right) \rightarrow S\left(\bigoplus_{i}^{\prime \infty} B\left(H_{i}\right)\right)$ is a surjective isometry. Then there exists a real linear isometry

$$
T: \bigoplus_{j}^{I_{\infty}} B\left(K_{j}\right) \rightarrow \bigoplus_{i}^{I_{\infty}} B\left(H_{i}\right)
$$

satisfying $T_{\mid S(E)}=\Delta$.

Restriction of linear means linear

Let $\tau: S_{X} \rightarrow S_{Y}$ be any map. If is it the restriction of some linear map $\widetilde{\tau}: X \rightarrow Y$, in particular $\tau\left(\lambda x+\lambda^{\prime} x^{\prime}\right)$ must be $\lambda \tau(x)+\lambda^{\prime} \tau\left(x^{\prime}\right)$ whenever $x, x^{\prime}, \lambda x+\lambda^{\prime} x^{\prime} \in S_{X}$.

Linear isometric isomorphisms from \mathbb{R}^{n}

We may take coordinates. Namely, given an n-dimensional space $\left(X,\|\cdot\|_{X}\right)$ and a basis $\mathcal{B}_{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$, we may identify $\left(X, \mathcal{B}_{X}\right)$ with \mathbb{R}^{n} endowed with its usual basis $\mathcal{B}_{n}=\left\{e_{1}, \ldots, e_{n}\right\}$ by defining a norm in \mathbb{R}^{n} as

$$
\left\|\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\|_{X}^{\prime}=\left\|\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right\|_{x}
$$

and $\phi_{X}: \mathbb{R}^{n} \rightarrow X$ given by

$$
\phi_{x}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}
$$

Linear isometric automorphisms of \mathbb{R}^{n}

If $\mathcal{B}_{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset S_{X}$ is a basis, $\tau: S_{X} \rightarrow S_{Y}$ is an isometry and $\mathcal{B}_{Y}=\left\{\tau\left(x_{1}\right), \ldots, \tau\left(x_{n}\right)\right\} \subset S_{Y}$ is also a basis, then we may identify both $\left(X, \mathcal{B}_{X}\right)$ and $\left(Y, \mathcal{B}_{Y}\right)$ with \mathbb{R}^{n} by means of linear isometries and we have an onto isometry τ^{\prime} between the spheres (in \mathbb{R}^{n}) of $\|\cdot\|_{X}^{\prime}$ and $\|\cdot\|_{Y}^{\prime}$ that leaves fixed every $e_{i} \in \mathcal{B}_{n}$, i.e.,

$$
\tau^{\prime}(1,0, \ldots, 0)=(1,0, \ldots, 0), \quad \tau^{\prime}(0,1, \ldots, 0)=(0,1, \ldots, 0) \ldots
$$

This means that τ and τ^{\prime} are linear if and only if τ^{\prime} is the identity.

Is τ^{\prime} the identity?

The way that we approach Tingley's Problem is:
Question: Let $\left(\mathbb{R}^{n},\|\cdot\|_{X}\right)$ and $\left(\mathbb{R}^{n},\|\cdot\|_{Y}\right)$ be normed spaces such that there is an isometry $\tau: S_{X} \subset \mathbb{R}^{n} \rightarrow S_{Y} \subset \mathbb{R}^{n}$ between their spheres such that $\tau\left(e_{i}\right)=e_{i}$ for every $e_{i} \in \mathcal{B}_{n}$. Is τ the identity? In particular, are S_{X} and S_{Y} the same subset of \mathbb{R}^{n} ?

Spheres and their geometry

For every onto isometry defined on the sphere S_{X} of a normed space to be linear it is sufficient that S_{X} has enough metric invariants to distinguish it from every other sphere.

Hypotheses and notations

We will suppose that

- X and Y are two-dimensional spaces,
- $\tau: S_{X} \rightarrow S_{Y}$ is an isometry,
- $\mathbf{r}_{X}: \mathbb{R} \rightarrow S_{X}$ and $\mathbf{r}_{Y}: \mathbb{R} \rightarrow S_{Y}$ are arc-length parameterizations of S_{X} and S_{Y} such that $\mathbf{r}_{Y}(t)=\tau\left(\mathbf{r}_{X}(t)\right)$ for every $t \in \mathbb{R}$.
- L is the half-length of S_{X} (of S_{Y}, too).

By Tingley's result, we have $\tau(-x)=-\tau(x)$ for every $x \in S_{X}$.

Our goal

We will show that when we take coordinates with respect to appropriate bases $\mathcal{B}_{X}=\left\{x, x^{\prime}\right\} \subset S_{X}$ and $\mathcal{B}_{Y}=\left\{y, y^{\prime}\right\} \subset S_{Y}, \tau$ is the identity.

Equivalently, that $\tau\left(\lambda x+\mu x^{\prime}\right)=\lambda y+\mu y^{\prime}$ for every λ, μ such that $\lambda x+\mu x^{\prime} \in S_{X}$.

Preliminar observations

Once we have taken coordinates, we may consider the subset $S_{X} \cap S_{Y}$, that is always closed in \mathbb{R}^{2} and also in S_{X}. As S_{X} is conected, if $S_{X} \cap S_{Y}$ is open in S_{X} then $S_{X} \cap S_{Y}=S_{X}$, i.e., $S_{Y}=S_{X}$.

Thanks to any of the versions of the Monotonicity Lemma, we get that every $\bar{x} \in S_{X}$ is determined by the distances

$$
\|\bar{x}-x\|_{x},\left\|\bar{x}-x^{\prime}\right\|_{x},\|\bar{x}+x\|_{x},\left\|\bar{x}+x^{\prime}\right\|_{x}
$$

This implies that the only autoisometry $\tau: S_{X} \rightarrow S_{X}$ such that $\tau(x)=x, \tau\left(x^{\prime}\right)=x^{\prime}$ is the identity. Joining all these facts, we obtain that if $S_{X} \cap S_{Y}$ is open in S_{X} then τ is the identity.

Segments

This case has been solved in [4].
Let, for each $x \in S_{X}, \mathcal{D}(x)=\left\{x^{\prime} \in S_{X}:\left\|x-x^{\prime}\right\|_{x}=2\right\}$.
This subset consists of the segments in S_{X} that contain $-x$.
As $\mathcal{D}(x)$ is defined by means of distances between points of S_{X}, one has $\mathcal{D}(\tau(x))=\tau(\mathcal{D}(x))$.
So, every segment containing x goes to another segment containing $\tau(x)$. In particular, the amount of segments in S_{X} is the same as in S_{Y}.

How to solve this case

Take some segments $\left[x_{1}, x_{2}\right] \subset S_{X}$ and $\left[y_{1}, y_{2}\right] \subset S_{Y}$, where $y_{1}=\tau\left(x_{1}\right), y_{2}=\tau\left(x_{2}\right)$.

Right now, I need to draw a little.

The natural parameterization

This case has been solved in [2].
I am very lucky because Tarás already gave a seminar to explain this case.
Suppose that the norms are strictly convex and smooth and, moreover, the natural parameterizations' derivatives are not only continuous but absolutely continuous.

This is exactly what we need to ensure that $\mathbf{r}_{X}^{\prime}(t)$ exists at every $t \in \mathbb{R}$, and that $\mathbf{r}_{X}^{\prime}(t)=\int_{0}^{t} \mathbf{r}_{X}^{\prime \prime}(s) \mathrm{d} s+\mathbf{r}_{X}^{\prime}(0)$. (Analogously with \mathbf{r}_{Y}^{\prime}).

Given S_{X} and S_{Y}, and the natural parameterizations $\mathbf{r}_{X}, \mathbf{r}_{Y}$, we may take the bases $\mathcal{B}_{X}=\left\{\mathbf{r}_{X}(0), \mathbf{r}_{X}^{\prime}(0)\right\}$ and $\mathcal{B}_{Y}=\left\{\mathbf{r}_{Y}(0), \mathbf{r}_{Y}^{\prime}(0)\right\}$.

How to use a differential equation

The proof of the fact that, under these circumstances, $\mathbf{r}_{X}(t)=\mathbf{r}_{Y}(t)$ for every $t \in \mathbb{R}$ comes from the following:

- As $\mathbf{r}_{X}(t)$ and $\mathbf{r}_{X}^{\prime}(t)$ are linearly independent, for each t there exist unique $\rho_{X}(t), \sigma_{X}(t) ; \rho_{Y}(t), \sigma_{Y}(t) \in \mathbb{R}$ such that $\mathbf{r}_{X}^{\prime \prime}(t)=-\rho_{X}(t) \mathbf{r}_{X}^{\prime}(t)+\sigma_{X}(t) \mathbf{r}_{X}(t) ; \quad \mathbf{r}_{Y}^{\prime \prime}(t)=-\rho_{Y}(t) \mathbf{r}_{Y}^{\prime}(t)+\sigma_{Y}(t) \mathbf{r}_{Y}(t)$.
- Given well-behaved functions $\rho_{X}, \sigma_{X}, \rho_{Y}, \sigma_{Y}$, there is exactly one solution $\left(\mathbf{r}_{X}(t)\right.$ and $\left.\mathbf{r}_{Y}(t)\right)$ to each differential equation. This is so because we have the right amount of initial conditions:
$\mathbf{r}_{X}(0)=(1,0)=\mathbf{r}_{Y}(0), \mathbf{r}_{X}^{\prime}(0)=(0,1), \mathbf{r}_{Y}^{\prime}(0)$.
- The functions ρ_{X}, σ_{X} can be computed by means of distances between points of S_{X} !! So, we obtain $\rho_{Y}=\rho_{X}, \sigma_{Y}=\sigma_{X}$ and the uniqueness of the solution gives $\mathbf{r}_{X}=\mathbf{r}_{Y}$.

Recognizing non-smoothness from close

This case has been solved in [5].
Given $x \in S_{X}$, the following are mutually equivalent:

- The norm $\|\cdot\|_{x}$ is differentiable at x.
- The sphere S_{X} is differentiable at x.
- If $\mathbf{r}_{X}\left(t_{0}\right)=x\left(\right.$ and $\left.\mathbf{r}_{X}\left(t_{0}+L\right)=-x\right)$, then the map $t \mapsto\left\|\mathbf{r}_{X}\left(t_{0}-t\right)-\mathbf{r}_{X}\left(t_{0}+L+t\right)\right\|_{X}$ is differentiable at $t=0$.

The third condition is preserved by the isometry τ, so S_{X} is differentiable at x if and only if S_{Y} is differentiable at $\tau(x)$.

Partial derivatives and linear combinations

Let $x=\mathbf{r}_{X}\left(t_{0}\right) \in S_{X}$ and take the basis $\mathcal{B}_{X}=\left\{-\mathbf{r}_{X}^{\prime}\left(t_{0}\right), x\right\}$. Take, furthermore, some $a \in S_{X}$ and $b=a+\lambda x \in S_{X}$.

With $F(\alpha, \beta)=\left\|b+\alpha e_{1}+\beta e_{2}-a\right\|_{X}$, we have $\frac{\partial F}{\partial e_{1}}(0,0)=0$; $\frac{\partial F}{\partial e_{2}}(0,0)=1$. So, if the derivative of \mathbf{r}_{X} at b is $\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ then $\frac{d}{d t}\left\|b+t\left(b_{1}^{\prime}, b_{2}^{\prime}\right)-a\right\|_{X}(0)=b_{2}^{\prime}$. So, b_{2}^{\prime} is the speed of growing of the distance to a when \mathbf{r}_{X} passes through b.

Recognizing non-smoothness from far

If S_{X} is not differentiable at x, then we have something like this:

As before, we have that b_{2}^{\prime} is the rate of growth of $\left\|\mathbf{r}_{X}(t)-a\right\|_{X}$ when $\mathbf{r}_{X}(t)$ approaches b from right and down. But this is not how $\left\|\mathbf{r}_{X}(t)-a\right\|_{X}$ grows when $\mathbf{r}_{X}(t)$ approaches b from left and above. This means that we can recognize when $(a-b) /\|a-b\|_{x}$ is a point of differentiability of S_{X}, at least when S_{X} is smooth in b.

Special directions

A point $x \in S_{X}$ is called special if for any bijective isometry $\tau: S_{X} \rightarrow S_{Y}$ to the unit sphere of a Banach space Y and any points $y, z \in S_{X}$ with $y-z=\|y-z\| \cdot x$ we have

$$
\tau(y)-\tau(z)=\|\tau(y)-\tau(z)\| \cdot \tau(x)=\|y-z\| \cdot \tau(x)
$$

When there is no basis

In this case, when there is exactly one pair of nondifferentiability points $x,-x$ in S_{X}, we have that x is special. Moreover, we may compute the change of coordinates needed to transform the basis that makes S_{X} arrive at $x=(0,1)$ horizontally into the basis that makes S_{X} leave $x=(0,1)$ horizontally.

The linear isometry (a.k.a. change of bases)

If T is the change of bases from $\mathcal{B}_{X}=\left\{\mathbf{r}_{-, X}\right\}$ to $\overline{\mathcal{B}}_{X}=\left\{\mathbf{r}_{+, X}\right\}$ and as A is its matrix with respect to \mathcal{B}_{X} then (as $T(0,1)=(0,1)$) we have $A=\left(\begin{array}{cc}\alpha & 0 \\ \beta & 1\end{array}\right)$. Moreover, we can determine α and β by means of distances, so the change of bases is the same for S_{X} and S_{Y}.

The second coordinates are known

To finish this sub-case, denoting $\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ the derivative of \mathbf{r}_{X} at b and $T\left(b_{1}^{\prime}, b_{2}^{\prime}\right)=\left(\bar{b}_{1}^{\prime}, \bar{b}_{2}^{\prime}\right)$, we can determine b_{2}^{\prime} and \bar{b}_{2}^{\prime}. Namely, b_{2}^{\prime} is the speed of growth of $\left\|\mathbf{r}_{X}(t)-a\right\|$ when $\mathbf{r}_{X}(t)$ approaches b by the right down side and \bar{b}_{2}^{\prime} is the same but approaching b from left and above.

Some basic linear algebra

We have $\left(\bar{b}_{1}^{\prime}, \bar{b}_{2}^{\prime}\right)=\left(\alpha b_{1}^{\prime}, \beta b_{1}^{\prime}+b_{2}^{\prime}\right)$ and $b_{2}^{\prime}, \bar{b}_{2}^{\prime}$ and β are known, so we can determine $b_{1}^{\prime}, \bar{b}_{1}^{\prime}$.

This means that we know both coordinates of the derivative of every point of S_{X} and these coordinates are the same in S_{Y}. With this, the result follows (but, surprisingly, only when there is exactly one pair of nondifferentiability points in S_{X}).

The importance of finiteness

We know that $(\tau(a)-\tau(b)) /\|\tau(a)-\tau(b)\|_{Y}$ is a nondifferentiability point of S_{Y} if and only if S_{X} is not smooth in $(a-b) /\|a-b\|_{x}$.
We are in the Case 3: Piecewise smooth spaces. This means that there are only finitely many points of nondifferentiability in S_{X} (in S_{Y}, too).
Under these conditions, every nondifferentiability pont in S_{X} is special.

When there is a basis

If $e_{1}, e_{2} \in S_{X}$ are linearly independent and both of them are special, then we can take coordinates with respect to $\mathcal{B}_{X}=\left\{e_{1}, e_{2}\right\}$ and $\mathcal{B}_{Y}=\left\{\tau\left(e_{1}\right), \tau\left(e_{2}\right)\right\}$ and get

$$
\begin{aligned}
& x-x^{\prime}=(\lambda, 0) \Longleftrightarrow \tau(x)-\tau\left(x^{\prime}\right)=(\lambda, 0) \\
& x-x^{\prime}=(0, \mu) \Longleftrightarrow \tau(x)-\tau\left(x^{\prime}\right)=(0, \mu)
\end{aligned}
$$

With due care, this is enough to prove the result in this case: every isometry $\tau: S_{X} \rightarrow S_{Y}$ is linear.

Some surprise

In this setting, the result is even more general:

Theorem: If S_{X} and S_{Y} are piecewise differentiable, $C_{X} \subset X$ and $C_{Y} \subset Y$ are piecewise differentiable convex Jordan curves and $\tau: C_{X} \rightarrow C_{Y}$ is an isometry, then τ is affine and X and Y are linearly isometric, provided there is a basis $x, x^{\prime} \in S_{X}$ of nondifferentiability points.

A brilliant idea

This case has been solved in [3].
There was a clear path towards the result in non-smooth spaces, and then I had the most clever idea I have ever had as a mathematician... Ask Tarás Banakh for help.

The lack of importance of finiteness

It turns out that Tarás found a way to measure the angles in the spheres (jumps of \mathbf{r}_{X}^{\prime}) and this was enough to show that every nondifferentiability point of every two-dimensional sphere is special.

S_{X} is C^{1} but r_{X}^{\prime} is not absolutely continuous

This case has been solved in [1].
The idea is that the jumps of $\mathbf{r}_{X}^{\prime \prime}$ can also be measured by means of the distances. So, every point where S_{X} is not twice differentiable is special and the result holds. . . because there are infinitely many points where $\mathbf{r}_{X}^{\prime \prime}$ does not exist. It is not exactly this way, but it is close.

I hope I'll be as lucky with this case as with the second one and Tarás will give a seminar to explain it, too.

Dzięki

Thank you very much for your attention.

T. Banakh.

Every 2-dimensional Banach space has the Mazur-Ulam property, preprint.

T. Banakh.

Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear. Journal of Mathematical Analysis and Applications, 500(1):125104, 2021.
T. Banakh and J. Cabello Sánchez.

Every non-smooth 2-dimensional Banach space has the Mazur-Ulam property.
Linear Algebra and its Applications, 625:1-19, 2021.

J. Cabello Sánchez.

A reflection on Tingley's problem and some applications.
Journal of Mathematical Analysis and Applications, 476(2):319-336, 2019.
J. Cabello Sánchez.

Linearity of isometries between convex Jordan curves.
Linear Algebra and its Applications, 621:1-17, 2021.
P. Mankiewicz.

On extension of isometries in normed linear spaces.
Bulletin de l'Académie Polonaise des Sciences, 20:367-371, 1972.
S. Mazur and S. Ulam.

Sur les transformations isométriques d'espaces vectoriels, normés.
Comptes rendus hebdomadaires des séances de l'Académie des sciences, 194:946-948, 1932.
D. Tingley.

Isometries of the unit sphere.
Geometriae Dedicata, 22(3):371-378, 1987.

