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Introduction
Two-dimensional spaces

Isometries in normed spaces
Traditional approach
Another way to see the Problem in finite-dimensional spaces

Tingley’s problem

We will deal with this question, that appeared in [8]:

Let (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) be normed spaces and τ : SX → SY
an onto isometry. Is τ the restriction of some linear isometry
τ̃ : X → Y ?
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Mazur-Ulam Theorem

The first great result about the isometries in normed spaces gives a
positive answer to the same Problem when the onto isometry is
defined on the whole space (see [7]). Namely:

Mazur-Ulam Theorem (1932): Every onto isometry τ̃ : X → Y
between normed spaces is affine. So, τ̃ is linear whenever τ̃(0) = 0.
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Mankiewicz’s Theorem

A huge advance about isometries between normed spaces was
Mankiewicz’s Theorem, and it is, to the best of our knowledge, the
first Theorem about extension of isometries (see [6]):

Mankiewicz’s Theorem (1972): Let X and Y be normed spaces,
FX ⊂ X and FY ⊂ Y be closed bodies. If τ : FX → FY is an onto
isometry, then it is the restriction of an affine isometry τ̃ : X → Y .
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Mazur-Ulam Property

Our problem is to determine whether every onto isometry between
spheres extends or not. A closely related problem is whether, fixing
a space (X , ‖ · ‖X ), every onto isometry τ : SX → SY extends or
not. This has led to:

Definition: A normed space (X , ‖ · ‖X ) has the Mazur-Ulam
Property if every onto isometry τ : SX → SY extends to a (linear,
onto) isometry τ̃ : X → Y .
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Extension of isometries

A weaker related problem is to find conditions that ensure that, for
some kind of spaces (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ), every onto
isometry τ : SX → SY is the restriction of some linear isometry
τ̃ : X → Y . As for example:

Theorem ([4]): If we consider R2 endowed with two p-norms, say
‖ · ‖X = ‖ · ‖p and ‖ · ‖Y = ‖ · ‖q with p, q ∈ (1,∞), and there is
an isometry τ : SX → SY , then q = p and τ is either the identity,
a symmetry or a rotation. Anyway, τ extends to a linear isometry
defined on X .
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Tingley’s problem again

What we are dealing with is, thank to Mazur, Ulam and
Mankiewicz, equivalent to each of the following:

Question: Is every onto isometry τ : SX → SY the restriction of
an isometry τ̃ : (X , ‖ · ‖X )→ (Y , ‖ · ‖Y )?

Question: Is every onto isometry τ : SX → SY the restriction of
an isometry τ : BX → BY ?
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The natural extension

The first idea that arose when dealing with Tingley’s Problem was
quite simple:
If τ : SX → SY has a linear extension τ̃ : X → Y , of course this
extension must fulfil τ̃(λx) = λτ(x) for every λ ≥ 0. So, the idea
is to take this natural extension τ̃ and prove that it is linear.
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Some results obtained with this approach
Theorem: Let τ : SX → SY be a surjective isometry between the unit
spheres of two compact C∗-algebras. Then there exists a (unique)
surjective real linear isometry τ̃ : X → Y such that τ̃(x) = τ(x) for every
x ∈ SX .
Theorem: Let τ : SX → SY be a surjective isometry between the unit
spheres of two von Neumann algebras. Then there exists a surjective real
linear isometry τ̃ : X → Y that restricted to SX is τ .
Theorem: Let (Hi )i∈I and (Kj)j∈J be two families of complex Hilbert
spaces. Suppose ∆ : S

(⊕l∞
j B(Kj)

)
→ S

(⊕l∞
i B(Hi )

)
is a surjective

isometry. Then there exists a real linear isometry

T :
l∞⊕
j

B(Kj)→
l∞⊕
i

B(Hi )

satisfying T|S(E) = ∆.
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Restriction of linear means linear

Let τ : SX → SY be any map. If is it the restriction of some linear
map τ̃ : X → Y , in particular τ(λx + λ′x ′) must be
λτ(x) + λ′τ(x ′) whenever x , x ′, λx + λ′x ′ ∈ SX .
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Linear isometric isomorphisms from Rn

We may take coordinates. Namely, given an n-dimensional space
(X , ‖ · ‖X ) and a basis BX = {x1, . . . , xn} ⊂ X , we may identify
(X ,BX ) with Rn endowed with its usual basis Bn = {e1, . . . , en} by
defining a norm in Rn as

‖(λ1, . . . , λn)‖′X = ‖λ1x1 + . . .+ λnxn‖X

and φX : Rn → X given by

φX (λ1, . . . , λn) = λ1x1 + . . .+ λnxn.
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Linear isometric automorphisms of Rn

If BX = {x1, . . . , xn} ⊂ SX is a basis, τ : SX → SY is an isometry
and BY = {τ(x1), . . . , τ(xn)} ⊂ SY is also a basis, then we may
identify both (X ,BX ) and (Y ,BY ) with Rn by means of linear
isometries and we have an onto isometry τ ′ between the spheres
(in Rn) of ‖ · ‖′X and ‖ · ‖′Y that leaves fixed every ei ∈ Bn, i.e.,

τ ′(1, 0, . . . , 0) = (1, 0, . . . , 0), τ ′(0, 1, . . . , 0) = (0, 1, . . . , 0) . . .

This means that τ and τ ′ are linear if and only if τ ′ is the identity.
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Is τ ′ the identity?

The way that we approach Tingley’s Problem is:
Question: Let (Rn, ‖ · ‖X ) and (Rn, ‖ · ‖Y ) be normed spaces such
that there is an isometry τ : SX ⊂ Rn → SY ⊂ Rn between their
spheres such that τ(ei ) = ei for every ei ∈ Bn. Is τ the identity?
In particular, are SX and SY the same subset of Rn?
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Spheres and their geometry

For every onto isometry defined on the sphere SX of a normed
space to be linear it is sufficient that SX has enough metric
invariants to distinguish it from every other sphere.
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Case 3: Piecewise smooth spaces
Case 4: Non smooth spaces
Case 5: Tarás’ ending: smooth but not absolutely smooth

Hypotheses and notations

We will suppose that
• X and Y are two-dimensional spaces,
• τ : SX → SY is an isometry,
• rX : R→ SX and rY : R→ SY are arc-length

parameterizations of SX and SY such that rY (t) = τ(rX (t)) for
every t ∈ R.
• L is the half-length of SX (of SY , too).

By Tingley’s result, we have τ(−x) = −τ(x) for every x ∈ SX .
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Our goal

We will show that when we take coordinates with respect to
appropriate bases BX = {x , x ′} ⊂ SX and BY = {y , y ′} ⊂ SY , τ is
the identity.

Equivalently, that τ(λx + µx ′) = λy + µy ′ for every λ, µ such that
λx + µx ′ ∈ SX .
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Preliminar observations

Once we have taken coordinates, we may consider the subset
SX ∩ SY , that is always closed in R2 and also in SX . As SX is
conected, if SX ∩ SY is open in SX then SX ∩ SY = SX , i.e.,
SY = SX .

Thanks to any of the versions of the Monotonicity Lemma, we get
that every x ∈ SX is determined by the distances

‖x − x‖X , ‖x − x ′‖X , ‖x + x‖X , ‖x + x ′‖X .

This implies that the only autoisometry τ : SX → SX such that
τ(x) = x , τ(x ′) = x ′ is the identity. Joining all these facts, we
obtain that if SX ∩ SY is open in SX then τ is the identity.
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Segments

This case has been solved in [4].
Let, for each x ∈ SX , D(x) = {x ′ ∈ SX : ‖x − x ′‖X = 2}.
This subset consists of the segments in SX that contain −x .
As D(x) is defined by means of distances between points of SX ,
one has D(τ(x)) = τ(D(x)).
So, every segment containing x goes to another segment
containing τ(x). In particular, the amount of segments in SX is the
same as in SY .
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How to solve this case

Take some segments [x1, x2] ⊂ SX and [y1, y2] ⊂ SY , where
y1 = τ(x1), y2 = τ(x2).

Right now, I need to draw a little.
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The natural parameterization

This case has been solved in [2].
I am very lucky because Tarás already gave a seminar to explain
this case.
Suppose that the norms are strictly convex and smooth and,
moreover, the natural parameterizations’ derivatives are not only
continuous but absolutely continuous.

This is exactly what we need to ensure that r′X (t) exists at every
t ∈ R, and that r′X (t) =

∫ t
0 r′′X (s) ds + r′X (0). (Analogously with

r′Y ).

Given SX and SY , and the natural parameterizations rX , rY , we
may take the bases BX = {rX (0), r′X (0)} and BY = {rY (0), r′Y (0)}.
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How to use a differential equation
The proof of the fact that, under these circumstances,
rX (t) = rY (t) for every t ∈ R comes from the following:

• As rX (t) and r′X (t) are linearly independent, for each t there
exist unique ρX (t), σX (t); ρY (t), σY (t) ∈ R such that

r′′X (t) = −ρX (t)r′X (t)+σX (t)rX (t); r′′Y (t) = −ρY (t)r′Y (t)+σY (t)rY (t).

• Given well-behaved functions ρX , σX , ρY , σY , there is exactly one
solution (rX (t) and rY (t)) to each differential equation. This is so
because we have the right amount of initial conditions:
rX (0) = (1, 0) = rY (0), r′X (0) = (0, 1), r′Y (0).

• The functions ρX , σX can be computed by means of distances
between points of SX !! So, we obtain ρY = ρX , σY = σX and the
uniqueness of the solution gives rX = rY .
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Recognizing non-smoothness from close

This case has been solved in [5].
Given x ∈ SX , the following are mutually equivalent:
• The norm ‖ · ‖X is differentiable at x .
• The sphere SX is differentiable at x .
• If rX (t0) = x (and rX (t0 + L) = −x), then the map
t 7→ ‖rX (t0 − t)− rX (t0 + L + t)‖X is differentiable at t = 0.

The third condition is preserved by the isometry τ , so SX is
differentiable at x if and only if SY is differentiable at τ(x).
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Partial derivatives and linear combinations

Let x = rX (t0) ∈ SX and take the basis BX = {−r′X (t0), x}. Take,
furthermore, some a ∈ SX and b = a + λx ∈ SX .

−e1

−e2

e2

a

b = a + λx

With F (α, β) = ‖b + αe1 + βe2 − a‖X , we have ∂F
∂e1 (0, 0) = 0;

∂F
∂e2 (0, 0) = 1. So, if the derivative of rX at b is (b′1, b′2) then
d
dt ‖b + t(b′1, b′2)− a‖X (0) = b′2. So, b′2 is the speed of growing of
the distance to a when rX passes through b.
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Recognizing non-smoothness from far

If SX is not differentiable at x , then we have something like this:

x

a

b

As before, we have that b′2 is the rate of growth of ‖rX (t)− a‖X
when rX (t) approaches b from right and down. But this is not how
‖rX (t)− a‖X grows when rX (t) approaches b from left and above.
This means that we can recognize when (a − b)/‖a − b‖X is a
point of differentiability of SX , at least when SX is smooth in b.
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Special directions

A point x ∈ SX is called special if for any bijective isometry
τ : SX → SY to the unit sphere of a Banach space Y and any
points y , z ∈ SX with y − z = ‖y − z‖ · x we have

τ(y)− τ(z) = ‖τ(y)− τ(z)‖ · τ(x) = ‖y − z‖ · τ(x).
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When there is no basis

In this case, when there is exactly one pair of nondifferentiability
points x ,−x in SX , we have that x is special. Moreover, we may
compute the change of coordinates needed to transform the basis
that makes SX arrive at x = (0, 1) horizontally into the basis that
makes SX leave x = (0, 1) horizontally.

x

a

b x

a

b
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The linear isometry (a.k.a. change of bases)

If T is the change of bases from BX = {r−,X} to BX = {r+,X} and
as A is its matrix with respect to BX then (as T (0, 1) = (0, 1)) we

have A =
(
α 0
β 1

)
. Moreover, we can determine α and β by

means of distances, so the change of bases is the same for SX and
SY .

27 / 36



Introduction
Two-dimensional spaces

Case 1: Non strictly convex spaces
Case 2: Tarás Banakh’s differential equation
Case 3: Piecewise smooth spaces
Case 4: Non smooth spaces
Case 5: Tarás’ ending: smooth but not absolutely smooth

The second coordinates are known

To finish this sub-case, denoting (b′1, b′2) the derivative of rX at b
and T (b′1, b′2) = (b′1, b

′
2), we can determine b′2 and b′2. Namely, b′2

is the speed of growth of ‖rX (t)− a‖ when rX (t) approaches b by
the right down side and b′2 is the same but approaching b from left
and above.
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Some basic linear algebra

We have (b′1, b
′
2) = (αb′1, βb′1 + b′2) and b′2, b′2 and β are known,

so we can determine b′1, b
′
1.

This means that we know both coordinates of the derivative of
every point of SX and these coordinates are the same in SY . With
this, the result follows (but, surprisingly, only when there is exactly
one pair of nondifferentiability points in SX ).
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The importance of finiteness

We know that (τ(a)− τ(b))/‖τ(a)− τ(b)‖Y is a
nondifferentiability point of SY if and only if SX is not smooth in
(a − b)/‖a − b‖X .
We are in the Case 3: Piecewise smooth spaces. This means that
there are only finitely many points of nondifferentiability in SX (in
SY , too).
Under these conditions, every nondifferentiability pont in SX is
special.
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When there is a basis

If e1, e2 ∈ SX are linearly independent and both of them are
special, then we can take coordinates with respect to
BX = {e1, e2} and BY = {τ(e1), τ(e2)} and get

x − x ′ = (λ, 0) ⇐⇒ τ(x)− τ(x ′) = (λ, 0);

x − x ′ = (0, µ) ⇐⇒ τ(x)− τ(x ′) = (0, µ).

With due care, this is enough to prove the result in this case: every
isometry τ : SX → SY is linear.
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Some surprise

In this setting, the result is even more general:

Theorem: If SX and SY are piecewise differentiable, CX ⊂ X and
CY ⊂ Y are piecewise differentiable convex Jordan curves and
τ : CX → CY is an isometry, then τ is affine and X and Y are
linearly isometric, provided there is a basis x , x ′ ∈ SX of
nondifferentiability points.
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A brilliant idea

This case has been solved in [3].
There was a clear path towards the result in non-smooth spaces,
and then I had the most clever idea I have ever had as a
mathematician. . . Ask Tarás Banakh for help.
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The lack of importance of finiteness

It turns out that Tarás found a way to measure the angles in the
spheres (jumps of r′X ) and this was enough to show that every
nondifferentiability point of every two-dimensional sphere is special.
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SX is C 1 but r′X is not absolutely continuous

This case has been solved in [1].
The idea is that the jumps of r′′X can also be measured by means of
the distances. So, every point where SX is not twice differentiable
is special and the result holds. . . because there are infinitely many
points where r′′X does not exist.
It is not exactly this way, but it is close.

I hope I’ll be as lucky with this case as with the second one and
Tarás will give a seminar to explain it, too.
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Thank you very much for your
attention.
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