When are maps preserving semi-inner products linear?

Paweł Wójcik

Institute of Mathematics
Pedagogical University of Cracow

Seminar on Geometry of Banach Spaces, April 7, 2021
$f: X \rightarrow X$
$[f(x) \mid f(y)]=[x \mid y]$

Let $(X,\|\cdot\|)$ be a normed space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. By S_{X} we denote the unit sphere in X. Let X^{*} be the collection of all continuous linear functionals on X. Lumer [2] proved that there always exists a mapping $[\cdot \mid \diamond]: X \times X \rightarrow \mathbb{K}$ satisfying the following properties:

- $\forall_{x, y, z \in X} \forall_{\alpha, \beta \in \mathbb{K}}: \quad[\alpha x+\beta y \mid z]=\alpha[x \mid z]+\beta[y \mid z] ;$
- $\forall_{x, y \in X} \forall_{\alpha \in \mathbb{K}}: \quad[x \mid \alpha y]=\bar{\alpha}[x \mid y]$;
- $\forall_{x, y \in X}: \quad|[x \mid y]| \leqslant\|x\| \cdot\|y\|, \quad[x \mid x]=\|x\|^{2}$.

Such a mapping is called a semi-inner product in X.
[2] G. Lumer, Semi-inner-product spaces, Trans. Am. Math. Soc., 100 (1961), 29-43.

A supporting functional $\varphi_{x}: X \rightarrow \mathbb{K}$ at $x \in X$ is a norm-one linear functional in X^{*} such that $\varphi_{x}(x)=\|x\|=\left\langle\varphi_{x}, x\right\rangle$. By the Hahn-Banach theorem there always exists at least one such functional for every $x \in X$. There may exist infinitely many different semi-inner products in X. There is a unique one if and only if X is smooth (i.e. there is a unique supporting functional at each point of the set $X \backslash\{0\}$). Then

$$
\begin{equation*}
[x \mid y]=\|y\| \cdot \varphi_{y}(x)=\|y\| \cdot\left\langle\varphi_{y}, x\right\rangle \quad \text { for all } \quad x, y \in X \tag{1}
\end{equation*}
$$

The following result appeared in
[1] D. Ilišević, A. Turnšek, On Wigner's theorem in smooth normed spaces, Aequationes Math. 94 (2020), 1257-1267.

Proposition

[1, Proposition 2.4] Let X, Y be normed spaces and $f: X \rightarrow Y$ a mapping such that $[f(x) \mid f(y)]=[x \mid y], x, y \in X$.
(i) If f is surjective, then f is a linear isometry.
(ii) If $X=Y$ is a smooth Banach space, then f is a linear isometry.

The above property (ii) is not true.
Unluckily, the proof of [1, Proposition 2.4] contains a small flaw.

In the proof of [1, Proposition 2.4], the authors postulated the following inclusion:

$$
\begin{equation*}
\left\{\xi \varphi_{f(z)} \in X^{*}: z \in X, \xi \in \mathbb{C}\right\} \supseteq\left\{\xi \varphi_{f(z)} \circ f \in X^{*}: z \in X, \xi \in \mathbb{C}\right\} \tag{2}
\end{equation*}
$$

where $\varphi_{f(z)} \circ f=\varphi_{z}$ (see [1, p. 1265, third line from the bottom]), which fails already in the Hilbert-space setting.
To see this, let us consider the Hilbert space ℓ_{2}. The only semi-inner product on ℓ_{2} is the inner product $\langle\cdot \mid \cdot\rangle$ itself. We consider the unilateral shift on ℓ_{2}, which is a non-surjective isometry $f: \ell_{2} \rightarrow \ell_{2}$; it is given by the formula $f(x)=f\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$. It is easy to see that $\langle f(x) \mid f(y)\rangle=\langle x \mid y\rangle$ and

$$
\left\{\xi \varphi_{f(z)} \circ f \in\left(\ell_{2}\right)^{*}: z \in \ell_{2}, \xi \in \mathbb{C}\right\}=\left(\ell_{2}\right)^{*}
$$

On the other hand,
$\left\{\xi \varphi_{f(z)} \in\left(\ell_{2}\right)^{*}: z \in \ell_{2}, \xi \in \mathbb{C}\right\}=\left\{\langle\cdot \mid w\rangle \in\left(\ell_{2}\right)^{*}: w=\left(0, w_{1}, w_{2}, \ldots\right) \in \ell_{2}\right\}$,
which demonstrates that indeed (2) is fatally flawed.

Theorem

Let X and Y be normed spaces with fixed semi-inner products $[\cdot \mid \cdot]_{X}$ and $[\cdot \mid \cdot]_{Y}$, respectively. Suppose that $f: X \rightarrow Y$ is a function such that

$$
\begin{equation*}
[f(x) \mid f(y)]_{Y}=[x \mid y]_{X} \quad(x, y \in X) \tag{3}
\end{equation*}
$$

(i) If $\operatorname{dim} X=\operatorname{dim} Y=n<\infty$, then f is a linear isometry.
(ii) If X has a Schauder basis $\left(e_{i}\right)$ and $\left(f\left(e_{i}\right)\right)$ is a Schauder basis of Y, then f is a linear isometry.

Proof: We will prove clause (ii) first. Suppose that $\left(e_{i}\right)$ is a Schauder basis of X and $\left(f\left(e_{i}\right)\right)$ is a Schauder basis of Y. We will show that for any scalars $\beta_{1}, \beta_{2}, \ldots$

$$
f\left(\sum_{i=1}^{\infty} \beta_{i} e_{i}\right)=\sum_{i=1}^{\infty} \beta_{i} f\left(e_{i}\right)
$$

as long as the series $\sum_{i=1}^{\infty} \beta_{i} e_{i}$ converges in X.

Fix $x \in X$. Since $\left(f\left(e_{i}\right)\right)_{i=1}^{\infty}$ is a basis, there are uniquely determined scalars $\beta_{1}, \beta_{2}, \ldots$ such that

$$
f(x)=\sum_{i=1}^{\infty} \beta_{i} f\left(e_{i}\right) .
$$

Let $x_{m}:=\sum_{i=1}^{m} \beta_{i} e_{i}$. It is enough to show that $x_{m} \rightarrow x$ as $m \rightarrow \infty$. Let us define the numbers $\varepsilon_{m}:=\left\|f(x)-\sum_{i=1}^{m} \beta_{i} f\left(e_{i}\right)\right\|$. Clearly, $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$. For every unit vector $u \in X$, we have $1=\|u\|=\|f(u)\|$. Thus

$$
\left|\left[f(x)-\sum_{i=1}^{m} \beta_{i} f\left(e_{i}\right) \mid f(u)\right]\right| \leqslant\left\|f(x)-\sum_{i=1}^{m} \beta_{i} f\left(e_{i}\right)\right\| \cdot\|f(u)\| \leqslant \varepsilon_{m} \cdot 1
$$

Using linearity of the semi-inner products in the first variable, we get

$$
\left|[f(x) \mid f(u)]-\left[\sum_{i=1}^{m} \beta_{i} f\left(e_{i}\right) \mid f(u)\right]\right|=\left|[f(x) \mid f(u)]-\sum_{i=1}^{m} \beta_{i}\left[f\left(e_{i}\right) \mid f(u)\right]\right| \leqslant \varepsilon_{m} .
$$

Combining the above inequality with (3) yields $\left|[x \mid u]-\sum_{i=1}^{m} \beta_{i}\left[e_{i} \mid u\right]\right| \leqslant \varepsilon_{m}$.

Consequently, $\left|\left[x-\sum_{i=1}^{m} \beta_{i} e_{i} \mid u\right]\right| \leqslant \varepsilon_{m}$, which means that $\left|\left[x-x_{m} \mid u\right]\right| \leqslant \varepsilon_{m}$.
It is known that $\left\{[\cdot \mid w] \in X^{*}:\|w\|=1, w \in X\right\}$ is a 1-norming subset in the dual ball of X^{*}, i.e.

$$
\|a\|=\sup \left\{[a \mid w] \in X^{*}:\|w\|=1, w \in X\right\} .
$$

This allows us to conclude that we have $\left\|x-x_{m}\right\| \leqslant \varepsilon_{m}$, so $x_{m} \rightarrow x$. We have thus proved that $x=\sum_{i=1}^{\infty} \beta_{i} e_{j}$.
It is helpful to recall: $f(x)=\sum_{i=1}^{\infty} \beta_{i} f\left(e_{i}\right)$. So, we have

$$
f\left(\sum_{i=1}^{\infty} \beta_{i} e_{i}\right)=\sum_{i=1}^{\infty} \beta_{i} f\left(e_{i}\right) .
$$

In particular, f is linear, hence also isometric because it preserves the semi-inner products.

Now, in order to prove clause (i), it is enough to show that f maps linearly independent sets to linearly independent sets.
Let $n=\operatorname{dim} X$. Fix a basis $\left\{b_{1}, \ldots, b_{n}\right\}$ for X. We claim that the set $\left\{f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right\}$ is linearly independent in Y. To see this, suppose that $\sum_{k=1}^{n} \alpha_{k} f\left(b_{k}\right)=0$. It follows from (3) that

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \alpha_{k} b_{k}\right\|^{2} & =\left[\sum_{k=1}^{n} \alpha_{k} b_{k} \mid \sum_{k=1}^{n} \alpha_{k} b_{k}\right] \\
& =\sum_{k=1}^{n} \alpha_{k}\left[b_{k} \mid \sum_{k=1}^{n} \alpha_{k} b_{k}\right]=\sum_{k=1}^{n} \alpha_{k}\left[f\left(b_{k}\right) \mid f\left(\sum_{k=1}^{n} \alpha_{k} b_{k}\right)\right] \\
& =\left[\sum_{k=1}^{n} \alpha_{k} f\left(b_{k}\right) \mid f\left(\sum_{k=1}^{n} \alpha_{k} b_{k}\right)\right]=\left[0 \mid f\left(\sum_{k=1}^{n} \alpha_{k} b_{k}\right)\right]=0 .
\end{aligned}
$$

Hence $\sum_{k=1}^{n} \alpha_{k} b_{k}=0$. Since the vectors b_{1}, \ldots, b_{n} are linearly independent, we have $\alpha_{1}=\ldots=\alpha_{n}=0$. This means that the vectors $f\left(b_{1}\right), \ldots, f\left(b_{n}\right)$ are linearly independent too. Consequently, $\left\{f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right\}$ is a basis for Y. Now, we can apply (ii).

Remark: It is worth mentioning that for finite-dimensional case, the assumption $\operatorname{dim} X=\operatorname{dim} Y$ is the best that can be said. Namely, an inequality $\operatorname{dim} X \leqslant \operatorname{dim} Y$ does not imply linearity of f; see the paper:
[3] P. Wójcik, On an orthogonality equation in normed spaces,
Funct. Anal. Appl. 52(3) (2018) 224-227.
Indeed, it was observed in [3] that if X is a non-Hilbertian finite-dimensional space with $n=\operatorname{dim} X \geqslant 3$ that is smooth, then there exists a space V of dimension $n-1$ and a non-linear map $f: V \rightarrow X$ that preserves semi-inner products. The map f may even be discontinuous unless X is strictly convex.

In this part of talk we manufacture an infinite-dimensional uniformly smooth Banach space \mathfrak{X} and a nonlinear mapping $f: \mathfrak{X} \rightarrow \mathfrak{X}$ such that

$$
[f(x) \mid f(y)]=[x \mid y], \quad x, y \in \mathfrak{X}
$$

Let $\left(Z,\|\cdot\|_{o}\right)$ be a two-dimensional normed space that is smooth but not strictly convex. Then there are distinct vectors $u, w \in Z$ such that $\operatorname{conv}\{u, w\} \subseteq S_{Z}$. Without loss of generality, we may assume that $Z=\mathbb{K}^{2}$ as a vector space and $u=(-c, 1), w=(c, 1)$ for some real number $0<c<1$. Thus $(0,1) \in S_{Z}$. Moreover, without loss of generality we may assume that $(1,0) \in S_{Z}$.

Lemma
Let $x \in \mathbb{K}$ and $\eta \in(0, c)$. Then $\|(\eta x, x)\|_{o}=\|(0, x)\|_{o}$.
Proof: Since $0<\eta<c$, we have $\frac{\eta+c}{2 c} \in[0,1]$ and

$$
(\eta, 1)=\left(1-\frac{\eta+c}{2 c}\right) u+\frac{\eta+c}{2 c} w \in \operatorname{conv}\{u, w\} \subseteq S_{Z}
$$

Thus $(\eta, 1) \in S_{Z}$, i.e., $\|(\eta, 1)\|_{o}=1$. Since $(0,1) \in S_{Z},\|(0,1)\|_{o}=1$.
Therefore $\|(\eta x, x)\|_{o}=|x| \cdot\|(\eta, 1)\|_{o}=|x| \cdot 1=|x|:\|(0,1)\|_{o} \equiv\|(0, x)\|_{o}$.

We shall consider the space $\mathfrak{X}:=\mathbb{K} \oplus_{2} \ell_{2}(Z)$, the ℓ_{2}-sum of infinitely many copies of Z and the one-dimensional space. In other words,

$$
\mathfrak{X}:=\mathbb{K} \oplus_{2} \quad Z \oplus_{2} \quad Z \oplus_{2} \quad Z \oplus_{2} \ldots
$$

and the norm in \mathfrak{X} is thus given by

$$
\begin{equation*}
\|x\|:=\sqrt{\left|x_{1}\right|^{2}+\sum_{k=1}^{\infty}\left\|\left(x_{2 k}, x_{2 k+1}\right)\right\|_{o}^{2}} \tag{4}
\end{equation*}
$$

where $x=\left(x_{1},\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}\right),\left(x_{6}, x_{7}\right), \ldots\right) \in \mathfrak{X}$.
The space \mathfrak{X} is uniformly smooth because Z is smooth (hence uniformly smooth being finite-dimensional) and uniform smoothness passes to ℓ_{2}-sums of infinitely many copies of a uniformly smooth space [2, Corollary 4.9]. Since Z is isomorphic to the two-dimensional Hilbert space, X is isomorphic to $\ell_{2}\left(\ell_{2}^{2}\right)$, which is isometric to ℓ_{2}.
[2] T. Zachariades, On ℓ_{ψ} spaces and infinite ψ-direct sums of Banach space, Rocky Mt. J. Math., 41(3): 971-997, 2011.

For a number $\eta \in(0, c)$, let $h_{\eta}: \mathfrak{X} \rightarrow \mathfrak{X}$ be a linear map given by

$$
\begin{equation*}
h_{\eta}\left(x_{1},\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}\right), \ldots\right):=\left(0,\left(\eta x_{1}, x_{1}\right),\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}\right), \ldots\right) . \tag{5}
\end{equation*}
$$

Applying Lemma 1 to (4) we deduce that h_{η} is a linear isometry. Consequently,

$$
\begin{equation*}
\left[h_{\eta}(x) \mid h_{\eta}(y)\right]=[x \mid y] \quad(x, y \in \mathfrak{X}, \eta \in(0, c)) . \tag{6}
\end{equation*}
$$

Combining (1) with (6) we may rearrange (6) as

$$
\begin{equation*}
\left\|h_{\eta}(y)\right\| \cdot\left\langle\varphi_{h_{\eta}(y)}, h_{\eta}(x)\right\rangle=[x \mid y] \quad(x, y \in \mathfrak{X}, \eta \in(0, c)) . \tag{7}
\end{equation*}
$$

Moreover, putting y in place of x in (6) we get

$$
\begin{equation*}
\left\|h_{\eta}(y)\right\|=\|y\| \quad(\eta \in(0, c)) \tag{8}
\end{equation*}
$$

We are now ready to construct the sought non-linear map that preserves semi-inner products.
For this, we fix a function $\gamma:[0, \infty) \rightarrow[0, \infty)$ with $\gamma(0)=0$ such that $0<\eta(x)<c(x \in \mathfrak{X} \backslash\{0\})$ and γ is not constant on $(0, \infty)$. Next we choose a function $\eta: \mathfrak{X} \rightarrow[0, c)$ by

$$
\eta(x):=\gamma(\|x\|) \quad(x \in \mathfrak{X}) .
$$

Then, we define a map $f: \mathfrak{X} \rightarrow \mathfrak{X}$ by the formula

$$
f\left(x_{1},\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}\right), \ldots\right):=\left(0,\left(\eta(x) x_{1}, x_{1}\right),\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}\right), \ldots\right)
$$

Then we may recognise that

$$
\begin{equation*}
f(x)=h_{\eta(x)}(x) \quad(x \in \mathfrak{X}) . \tag{9}
\end{equation*}
$$

Consequently, f fails to be linear. However, in the case where

- γ is continuous and non-constant on $(0, \infty), f$ is continuous;
- γ is discontinuous on $(0, \infty), f$ is discontinuous too.

We claim that for all $x, y \in X$ we have $[f(x) \mid f(y)]=[x \mid y]$. For this, fix $x, y \in \mathfrak{X}$ and consider the associated maps $h_{\eta(y)}, h_{\eta(x)}: \mathfrak{X} \rightarrow \mathfrak{X}$.

Applying again Lemma 1 to (4) and (5), we conclude that

$$
\left\|h_{\eta(y)}(y)+h_{\eta(x)}(y)\right\|=\left\|h_{\eta(y)}(y)\right\|+\left\|h_{\eta(x)}(y)\right\| .
$$

It follows from the well-known property $\|a+b\|=\|a\|+\|b\| \Rightarrow \varphi_{a}=\varphi_{b}$ that $\varphi_{h_{\eta(y)}(y)}=\varphi_{h_{\eta(x)}(y)}$, i.e.,

$$
\begin{equation*}
\left\langle\varphi_{h_{\eta(y)}(y)}, w\right\rangle=\left\langle\varphi_{h_{\eta(x)}(y)}, w\right\rangle \quad(w \in \mathfrak{X}) . \tag{10}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
{[f(x) \mid f(y)] } & \stackrel{(1)}{=}\|f(y)\| \cdot\left\langle\varphi_{f(y)}, f(x)\right\rangle \stackrel{(9)}{=}\left\|h_{\eta(y)}(y)\right\| \cdot\left\langle\varphi_{h_{\eta(y)}(y)}, h_{\eta(x)}(x)\right\rangle \\
& \stackrel{(10)}{=}\left\|h_{\eta(y)}(y)\right\| \cdot\left\langle\varphi_{h_{\eta(x)}(y)}, h_{\eta(x)}(x)\right\rangle \stackrel{(8)}{=}\|y\| \cdot\left\langle\varphi_{h_{\eta(x)}(y)}, h_{\eta(x)}(x)\right\rangle \\
& \stackrel{(8)}{=}\left\|h_{\eta(x)}(y)\right\| \cdot\left\langle\varphi_{h_{\eta(x)}(y)}, h_{\eta(x)}(x)\right\rangle \stackrel{(7)}{=}[x \mid y] .
\end{aligned}
$$

This shows that $f: \mathfrak{X} \rightarrow \mathfrak{X}$ is indeed a non-linear map preserving semi-inner products.

Remark: In the above construction one may consider the ℓ_{p}-sums for $p \in(1, \infty)$ instead of the ℓ_{2}-sum. This will lead to a renorming of ℓ_{p} on which one may find a non-linear injection preserving the (unique) semi-inner products.

Suppose that X is a Banach space and let $[\cdot \mid \diamond]: X \times X \rightarrow \mathbb{K}$ be fixed. Assume that $f: X \rightarrow X$ satisfy $[f(x) \mid f(y)]=[x \mid y], \quad x, y \in X$.

- Does strict convexity of X imply linearity of f ?

If not, then the following open problem will seem to be natural:

- Suppose that X is uniformly strictly convex and uniformly smooth. Are the mapping f linear?
If still not, then we will get another open problem:
- Characterize all functions $f: X \rightarrow X$ which satisfy $[f(x) \mid f(y)]=[x \mid y]$, $x, y \in X$.

Thank you for your attention.

Bibliography

这D. Ilišević, A. Turnšek, On Wigner's theorem in smooth normed spaces, Aequationes Math. 94 (2020), 1257-1267.

T- G. Lumer, Semi-inner-product spaces, Trans. Am. Math. Soc., 100 (1961), 29-43.
T
P. Wójcik, On an orthogonality equation in normed spaces, Funct. Anal. Appl. 52(3) (2018) 224-227.
R
T. Zachariades, On ℓ_{ψ} spaces and infinite ψ-direct sums of Banach space, Rocky Mt. J. Math., 41(3): 971-997, 2011.032.

