Nonlinear geometry of operator spaces

Bruno de Mendonça Braga

University of Virginia

April 21st, 2021

B. M. Braga

Nonlinear geometry of operator spaces

April 21st, 2021 1/39

This talk contains joint work with

- Javier Alejandro Chávez-Domínguez (University of Oklahoma)
- Thomas Sinclair (Purdue University)

< 🗇 🕨

B → < B

< A >

Banach spaces are assumed to be over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Banach spaces are assumed to be over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

If $(X, \|\cdot\|)$ is a Banach space, then $(X, \|\cdot - \cdot\|)$ is a metric space.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Banach spaces are assumed to be over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

If $(X, \|\cdot\|)$ is a Banach space, then $(X, \|\cdot - \cdot\|)$ is a metric space.

Problem

What aspects of the **linear** structure of a Banach space are encoded by their **metric** (**nonlinear**) structure?

Image: A math

Banach spaces are assumed to be over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

If $(X, \|\cdot\|)$ is a Banach space, then $(X, \|\cdot - \cdot\|)$ is a metric space.

Problem

What aspects of the **linear** structure of a Banach space are encoded by their **metric** (**nonlinear**) structure?

A map $f : X \to Y$ between metric spaces (X, d) and (Y, ∂) is an **isometry** if

$$\partial(f(x), f(y)) = d(x, y)$$
 for all $x, y \in X$.

Image: A mathematic state of the state of

Banach spaces are assumed to be over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

If $(X, \|\cdot\|)$ is a Banach space, then $(X, \|\cdot - \cdot\|)$ is a metric space.

Problem

What aspects of the **linear** structure of a Banach space are encoded by their **metric** (**nonlinear**) structure?

A map $f : X \to Y$ between metric spaces (X, d) and (Y, ∂) is an **isometry** if

$$\partial(f(x), f(y)) = d(x, y)$$
 for all $x, y \in X$.

Theorem (Mazur and Ulam, 1932)

If f is a surjective isometry between Banach spaces and f(0) = 0, then f is \mathbb{R} -linear.

< ロ > < 同 > < 回 > < 回 > < 回 > <

프 () () ()

< A >

Looking at Banach spaces as topological spaces is not very enlightening:

ヨトィヨト

• • • • • • • • • • •

Looking at Banach spaces as topological spaces is not very enlightening:

Theorem (Kadets, 1932, Torunczyk, 1981)

Banach spaces with the same density character are homeomorphic.

< A >

Looking at Banach spaces as topological spaces is not very enlightening:

Theorem (Kadets, 1932, Torunczyk, 1981)

Banach spaces with the same density character are homeomorphic.

An issue of working with $\mathbb{K} = \mathbb{C}$:

< A > <

Looking at Banach spaces as topological spaces is not very enlightening:

Theorem (Kadets, 1932, Torunczyk, 1981)

Banach spaces with the same density character are homeomorphic.

An issue of working with $\mathbb{K} = \mathbb{C}$:

Theorem (Bourgain, 1986)

There are \mathbb{C} -Banach spaces which are isometric as \mathbb{R} -Banach spaces but not isomorphic as \mathbb{C} -Banach spaces.

∃ → < ∃ →</p>

• • • • • • • • •

Looking at Banach spaces as topological spaces is not very enlightening:

Theorem (Kadets, 1932, Torunczyk, 1981)

Banach spaces with the same density character are homeomorphic.

An issue of working with $\mathbb{K} = \mathbb{C}$:

Theorem (Bourgain, 1986)

There are \mathbb{C} -Banach spaces which are isometric as \mathbb{R} -Banach spaces but not isomorphic as \mathbb{C} -Banach spaces.

Theorem (Ferenczi, 2007)

There are \mathbb{C} -Banach spaces which are isometric as \mathbb{R} -Banach spaces but totally incomparable as \mathbb{C} -Banach spaces.

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Let (X, d) and (Y, ∂) be metric spaces, $f : X \to Y$ be a map and consider the modulus

$$\omega_f(t) = \sup \Big\{ \partial(f(x), f(y)) \mid d(x, y) \leqslant t \Big\}.$$

∃ → < ∃ →</p>

Image: A mathematic state of the state of

Let (X, d) and (Y, ∂) be metric spaces, $f : X \to Y$ be a map and consider the modulus

$$\omega_f(t) = \sup \Big\{ \partial(f(x), f(y)) \mid d(x, y) \leqslant t \Big\}.$$

• *f* is called **coarse** if $\omega_f(t) < \infty$ for all $t \ge 0$.

∃ → < ∃ →</p>

Image: A mathematic state of the state of

Let (X, d) and (Y, ∂) be metric spaces, $f : X \to Y$ be a map and consider the modulus

$$\omega_f(t) = \sup \Big\{ \partial(f(x), f(y)) \mid d(x, y) \leqslant t \Big\}.$$

- *f* is called **coarse** if $\omega_f(t) < \infty$ for all $t \ge 0$.
- *f* is called Lipschitz if Lip(*f*) = sup_{t>0} ω_f(t)/t < ∞ Lip(f) is the Lipschitz constant of *f*.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Let (X, d) and (Y, ∂) be metric spaces, $f : X \to Y$ be a map and consider the modulus

$$\omega_f(t) = \sup \Big\{ \partial(f(x), f(y)) \mid d(x, y) \leqslant t \Big\}.$$

- *f* is called **coarse** if $\omega_f(t) < \infty$ for all $t \ge 0$.
- *f* is called Lipschitz if Lip(*f*) = sup_{t>0} ω_f(t)/t < ∞ Lip(f) is the Lipschitz constant of *f*.

Embeddings:

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Let (X, d) and (Y, ∂) be metric spaces, $f : X \to Y$ be a map and consider the modulus

$$\omega_f(t) = \sup \Big\{ \partial(f(x), f(y)) \mid d(x, y) \leqslant t \Big\}.$$

- *f* is called **coarse** if $\omega_f(t) < \infty$ for all $t \ge 0$.
- *f* is called Lipschitz if Lip(*f*) = sup_{t>0} ω_f(t)/t < ∞ Lip(f) is the Lipschitz constant of *f*.

Embeddings:

• *f* is a **coarse embedding** if it is coarse and $\lim_{t\to\infty} \rho_f(t) = \infty$, where

$$\rho_f(t) = \inf \left\{ \partial(f(x), f(y)) \mid d(x, y) \ge t \right\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (X, d) and (Y, ∂) be metric spaces, $f : X \to Y$ be a map and consider the modulus

$$\omega_f(t) = \sup \Big\{ \partial(f(x), f(y)) \mid d(x, y) \leqslant t \Big\}.$$

- *f* is called **coarse** if $\omega_f(t) < \infty$ for all $t \ge 0$.
- *f* is called Lipschitz if Lip(*f*) = sup_{t>0} ω_f(t)/t < ∞ Lip(f) is the Lipschitz constant of *f*.

Embeddings:

• *f* is a **coarse embedding** if it is coarse and $\lim_{t\to\infty} \rho_f(t) = \infty$, where

$$\rho_f(t) = \inf \left\{ \partial(f(x), f(y)) \mid d(x, y) \ge t \right\}.$$

• *f* is a **Lipschitz embedding** if *f* is Lipschitz and $f^{-1} : f(X) \to X$ is Lipschitz.

Э

< ロ > < 回 > < 回 > < 回 > < 回 >

Equivalences:

э

<ロ> <同> <同> < 同> < 同>

Equivalences:

• If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.

3 N

Equivalences:

- If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.
- *f* is a **Lipschitz equivalence** if it is a bijection and both *f* and *f*⁻¹ are Lipschitz.

医下子 医

Equivalences:

- If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.
- *f* is a **Lipschitz equivalence** if it is a bijection and both *f* and *f*⁻¹ are Lipschitz.

Basic examples:

医下子 医

Equivalences:

- If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.
- *f* is a **Lipschitz equivalence** if it is a bijection and both *f* and *f*⁻¹ are Lipschitz.

Basic examples:

• All bounded metric spaces are coarsely equivalent.

Equivalences:

- If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.
- *f* is a **Lipschitz equivalence** if it is a bijection and both *f* and *f*⁻¹ are Lipschitz.

Basic examples:

- All bounded metric spaces are coarsely equivalent.
- Let *G* be a finitely generated group. If *S* and *F* are finite generating sets, then the Cayley graphs Cay(G, S) and Cay(G, F) are coarsely equivalent.

B N 4 B N

Equivalences:

- If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.
- *f* is a **Lipschitz equivalence** if it is a bijection and both *f* and *f*⁻¹ are Lipschitz.

Basic examples:

- All bounded metric spaces are coarsely equivalent.
- Let *G* be a finitely generated group. If *S* and *F* are finite generating sets, then the Cayley graphs Cay(G, S) and Cay(G, F) are coarsely equivalent.
- If *X* is a Banach space and *N* ⊂ *X* is a net, then *X* is coarsely equivalent to *N*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Equivalences:

- If *X* and *Y* are Banach spaces, *f* is a **coarse equivalence** if it is a bijection and both *f* and *f*⁻¹ are coarse.
- *f* is a **Lipschitz equivalence** if it is a bijection and both *f* and *f*⁻¹ are Lipschitz.

Basic examples:

- All bounded metric spaces are coarsely equivalent.
- Let *G* be a finitely generated group. If *S* and *F* are finite generating sets, then the Cayley graphs Cay(G, S) and Cay(G, F) are coarsely equivalent.
- If *X* is a Banach space and *N* ⊂ *X* is a net, then *X* is coarsely equivalent to *N*.
- If X is infinite dimensional, any two nets of X are Lipschitzly equivalent.

< < >> < <</>

Theorem (Aharoni and Lindenstrauss, 1978)

There are nonseparable Banach spaces which are Lipschitzly equivalent but not linearly isomorphic.

Theorem (Aharoni and Lindenstrauss, 1978)

There are nonseparable Banach spaces which are Lipschitzly equivalent but not linearly isomorphic.

Theorem (Ribe, 1976)

Coarsely equivalent Banach spaces are finitely representable in each other.

Theorem (Aharoni and Lindenstrauss, 1978)

There are nonseparable Banach spaces which are Lipschitzly equivalent but not linearly isomorphic.

Theorem (Ribe, 1976)

Coarsely equivalent Banach spaces are finitely representable in each other.

Theorem (Enflo, 1970)

If a Banach space is coarsely equivalent to a Hilbert space, then it is isomorphic to it.

3 > < 3

• • • • • • • • •

Theorem (Aharoni and Lindenstrauss, 1978)

There are nonseparable Banach spaces which are Lipschitzly equivalent but not linearly isomorphic.

Theorem (Ribe, 1976)

Coarsely equivalent Banach spaces are finitely representable in each other.

Theorem (Enflo, 1970)

If a Banach space is coarsely equivalent to a Hilbert space, then it is isomorphic to it.

Theorem (Johnson, Lindenstrauss, Schechtman, 1996)

If a Banach space is coarsely equivalent to ℓ_p , for $p \in (1, \infty)$, then it is isomorphic to it.

Matrix spaces and amplifications of maps

프 () () ()

< < >> < <</>

Let *X* and *Y* be sets, $f : X \rightarrow Y$ be a map and $n \in \mathbb{N}$.

∃ → < ∃</p>

< 🗇 🕨

Let *X* and *Y* be sets, $f : X \rightarrow Y$ be a map and $n \in \mathbb{N}$.

• $M_n(X)$ denotes the *n*-by-*n* matrices with entries on *X*.

Let X and Y be sets, $f : X \rightarrow Y$ be a map and $n \in \mathbb{N}$.

• $M_n(X)$ denotes the *n*-by-*n* matrices with entries on *X*.

• If
$$X = \mathbb{K}$$
, $M_n = M_n(\mathbb{K})$.

Let X and Y be sets, $f : X \to Y$ be a map and $n \in \mathbb{N}$.

- $M_n(X)$ denotes the *n*-by-*n* matrices with entries on *X*.
- If $X = \mathbb{K}$, $M_n = M_n(\mathbb{K})$.
- Elements in $M_n(X)$ are denoted by $[x_{ij}]$, i.e.,

$$[x_{ij}] = \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix}.$$

Let X and Y be sets, $f : X \to Y$ be a map and $n \in \mathbb{N}$.

- $M_n(X)$ denotes the *n*-by-*n* matrices with entries on *X*.
- If $X = \mathbb{K}$, $M_n = M_n(\mathbb{K})$.
- Elements in M_n(X) are denoted by [x_{ij}], i.e.,

$$\begin{bmatrix} x_{ij} \end{bmatrix} = \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix}$$

• Given a map $f : X \to Y$, the *n*-th amplification of *f* is the map $f_n : M_n(X) \to M_n(Y)$ given by

Let X and Y be sets, $f : X \to Y$ be a map and $n \in \mathbb{N}$.

- $M_n(X)$ denotes the *n*-by-*n* matrices with entries on *X*.
- If $X = \mathbb{K}$, $M_n = M_n(\mathbb{K})$.
- Elements in M_n(X) are denoted by [x_{ij}], i.e.,

$$\begin{bmatrix} x_{ij} \end{bmatrix} = \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix}$$

• Given a map $f: X \to Y$, the *n*-th amplification of *f* is the map $f_n: M_n(X) \to M_n(Y)$ given by

$$f_n\left(\begin{bmatrix}x_{11}&\ldots&x_{1n}\\\vdots&\ddots&\vdots\\x_{n1}&\ldots&x_{nn}\end{bmatrix}\right) = \begin{bmatrix}f(x_{11})&\ldots&f(x_{1n})\\\vdots&\ddots&\vdots\\f(x_{n1})&\ldots&f(x_{nn})\end{bmatrix}$$

в.		

-

< 🗇 🕨

If *X* is a Banach space, then $M_n(X)$ is a vector space.

< A >

If X is a Banach space, then $M_n(X)$ is a vector space.

How can we see $M_n(X)$ as a Banach space?

If *X* is a Banach space, then $M_n(X)$ is a vector space.

How can we see $M_n(X)$ as a Banach space?

• Given a Hilbert space *H*, *B*(*H*) denotes the space of bounded operators on *H*.

If *X* is a Banach space, then $M_n(X)$ is a vector space.

How can we see $M_n(X)$ as a Banach space?

- Given a Hilbert space *H*, *B*(*H*) denotes the space of bounded operators on *H*.
- As $M_n(\mathcal{B}(H)) \cong \mathcal{B}(H^n)$, we can naturally see $M_n(\mathcal{B}(H))$ as a Banach space.

• • • • • • • • •

If *X* is a Banach space, then $M_n(X)$ is a vector space.

How can we see $M_n(X)$ as a Banach space?

- Given a Hilbert space *H*, *B*(*H*) denotes the space of bounded operators on *H*.
- As $M_n(\mathcal{B}(H)) \cong \mathcal{B}(H^n)$, we can naturally see $M_n(\mathcal{B}(H))$ as a Banach space.
- In particular, if X is a closed linear subspace of $\mathcal{B}(H)$, then $M_n(X) \subset M_n(\mathcal{B}(H))$, so $M_n(X)$ inherits a norm from $M_n(\mathcal{B}(H))$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

If *X* is a Banach space, then $M_n(X)$ is a vector space.

How can we see $M_n(X)$ as a Banach space?

- Given a Hilbert space *H*, *B*(*H*) denotes the space of bounded operators on *H*.
- As $M_n(\mathcal{B}(H)) \cong \mathcal{B}(H^n)$, we can naturally see $M_n(\mathcal{B}(H))$ as a Banach space.
- In particular, if X is a closed linear subspace of $\mathcal{B}(H)$, then $M_n(X) \subset M_n(\mathcal{B}(H))$, so $M_n(X)$ inherits a norm from $M_n(\mathcal{B}(H))$.

An **operator space** is a closed linear subspace of $\mathcal{B}(H)$ for some Hilbert space *H*. So each $M_n(X)$ is a Banach space.

If *X* is a Banach space, then $M_n(X)$ is a vector space.

How can we see $M_n(X)$ as a Banach space?

- Given a Hilbert space *H*, *B*(*H*) denotes the space of bounded operators on *H*.
- As $M_n(\mathcal{B}(H)) \cong \mathcal{B}(H^n)$, we can naturally see $M_n(\mathcal{B}(H))$ as a Banach space.
- In particular, if X is a closed linear subspace of $\mathcal{B}(H)$, then $M_n(X) \subset M_n(\mathcal{B}(H))$, so $M_n(X)$ inherits a norm from $M_n(\mathcal{B}(H))$.

An **operator space** is a closed linear subspace of $\mathcal{B}(H)$ for some Hilbert space *H*. So each $M_n(X)$ is a Banach space.

What is the difference between Banach spaces and operator spaces then?

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

в.		

< A >

The correct morphisms:

∃ → < ∃</p>

< A >

The correct morphisms:

• Given a linear map $f : X \to Y$ between operator spaces and $n \in \mathbb{N}$, $||f_n||_n$ is the norm of $f_n : M_n(X) \to M_n(Y)$ and

$$\|f\|_{\rm cb} = \sup_n \|f_n\|_n.$$

The correct morphisms:

• Given a linear map $f : X \to Y$ between operator spaces and $n \in \mathbb{N}$, $||f_n||_n$ is the norm of $f_n : M_n(X) \to M_n(Y)$ and

$$\|f\|_{\rm cb} = \sup_n \|f_n\|_n.$$

• If $||f||_{cb} < \infty$, *f* is completely bounded and, if $||f_n||_n \le 1$ for all $n \in \mathbb{N}$, *f* is a complete contraction.

イロト イポト イラト イラト

The correct morphisms:

• Given a linear map $f : X \to Y$ between operator spaces and $n \in \mathbb{N}$, $||f_n||_n$ is the norm of $f_n : M_n(X) \to M_n(Y)$ and

$$\|f\|_{\rm cb} = \sup_n \|f_n\|_n.$$

- If $||f||_{cb} < \infty$, *f* is completely bounded and, if $||f_n||_n \le 1$ for all $n \in \mathbb{N}$, *f* is a complete contraction.
- The set of all completely bounded maps $X \to Y$ is denoted by CB(X, Y).

-

The correct morphisms:

• Given a linear map $f : X \to Y$ between operator spaces and $n \in \mathbb{N}$, $||f_n||_n$ is the norm of $f_n : M_n(X) \to M_n(Y)$ and

$$\|f\|_{\rm cb} = \sup_n \|f_n\|_n.$$

- If $||f||_{cb} < \infty$, *f* is completely bounded and, if $||f_n||_n \le 1$ for all $n \in \mathbb{N}$, *f* is a complete contraction.
- The set of all completely bounded maps $X \to Y$ is denoted by CB(X, Y).
- *f* is a **complete isomorphism** if both *f* and f^{-1} are completely bounded and a **complete isometry** if both *f* and f^{-1} are complete contractions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

(Non)Examples:

(Non)Examples:

• The transpose map $T : \mathcal{B}(\ell_2) \to \mathcal{B}(\ell_2)$ is not completely bounded:

▲ 글 → ▲ 글 →

(Non)Examples:

 The transpose map *T* : B(ℓ₂) → B(ℓ₂) is not completely bounded: Let (δ_i)_i be the standard unit basis of ℓ₂.

▲ 国 → ▲ 国 →

(Non)Examples:

B. M. Brada

The transpose map *T* : B(ℓ₂) → B(ℓ₂) is not completely bounded: Let (δ_i)_i be the standard unit basis of ℓ₂. So *T*([a_{i,i}]) = [a_{i,i}] for all a = [a_{i,i}] ∈ B(ℓ₂) where a_{i,i} = ⟨aδ_i, δ_i⟩.

Nonlinear geometry of operator spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

April 21st, 2021

11/39

(Non)Examples:

The transpose map *T* : B(ℓ₂) → B(ℓ₂) is not completely bounded: Let (δ_i)_i be the standard unit basis of ℓ₂. So *T*([*a_{i,j}*]) = [*a_{j,i}*] for all *a* = [*a_{i,j}*] ∈ B(ℓ₂) where *a_{i,j}* = ⟨*a*δ_j, δ_i⟩. For *i*, *j* ∈ N, let *e_{ij}* be the rank 1 partial isometry sending δ_i to δ_j.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Non)Examples:

The transpose map *T* : *B*(*l*₂) → *B*(*l*₂) is not completely bounded: Let (*δ_i*)*_i* be the standard unit basis of *l*₂. So *T*([*a_i*,*j*]) = [*a_j*,*i*] for all *a* = [*a_i*,*j*] ∈ *B*(*l*₂) where *a_i*,*j* = ⟨*aδ_j*,*δ_i*⟩. For *i*, *j* ∈ N, let *e_{ij}* be the rank 1 partial isometry sending *δ_j* to *δ_i*. Then, for each *n* ∈ N, we have

$$\begin{bmatrix} e_{11} & 0 & \dots & 0 \\ e_{12} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & 0 & \dots & 0 \end{bmatrix} \Big|_{n} = 1 \text{ and } \left\| \begin{bmatrix} e_{11} & 0 & \dots & 0 \\ e_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{n1} & 0 & \dots & 0 \end{bmatrix} \right\|_{n} = \sqrt{n}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Non)Examples:

The transpose map *T* : *B*(*l*₂) → *B*(*l*₂) is not completely bounded: Let (*δ_i*)_{*i*} be the standard unit basis of *l*₂. So *T*([*a_{i,j}*]) = [*a_{j,i}*] for all *a* = [*a_{i,j}*] ∈ *B*(*l*₂) where *a_{i,j}* = ⟨*aδ_j*, *δ_i*⟩. For *i*, *j* ∈ N, let *e_{ij}* be the rank 1 partial isometry sending *δ_j* to *δ_i*. Then, for each *n* ∈ N, we have

$$\begin{bmatrix} e_{11} & 0 & \dots & 0 \\ e_{12} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & 0 & \dots & 0 \end{bmatrix} \Big|_{n} = 1 \text{ and } \left\| \begin{bmatrix} e_{11} & 0 & \dots & 0 \\ e_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{n1} & 0 & \dots & 0 \end{bmatrix} \right\|_{n} = \sqrt{n}$$

• The norm map $N : x \in \mathcal{B}(\ell_2) \rightarrow ||x|| \in \mathbb{R}$ is not completely bounded.

(Non)Examples:

The transpose map *T* : B(ℓ₂) → B(ℓ₂) is not completely bounded: Let (δ_i)_i be the standard unit basis of ℓ₂. So *T*([*a_{i,j}*]) = [*a_{j,i}*] for all *a* = [*a_{i,j}*] ∈ B(ℓ₂) where *a_{i,j}* = ⟨*a*δ_j, δ_i⟩. For *i*, *j* ∈ N, let *e_{ij}* be the rank 1 partial isometry sending δ_j to δ_j. Then, for each *n* ∈ N, we have

$$\begin{bmatrix} e_{11} & 0 & \dots & 0 \\ e_{12} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & 0 & \dots & 0 \end{bmatrix} \Big|_{n} = 1 \text{ and } \left\| \begin{bmatrix} e_{11} & 0 & \dots & 0 \\ e_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{n1} & 0 & \dots & 0 \end{bmatrix} \right\|_{n} = \sqrt{n}$$

• The norm map $N : x \in \mathcal{B}(\ell_2) \to ||x|| \in \mathbb{R}$ is not completely bounded. Indeed, if $a \in M_n(\mathcal{B}(\ell_2))$ is the matrix on the left above, then $||a||_n = 1$ but $\operatorname{Lip}(N_n) = \sqrt{n}$ for all $n \in \mathbb{N}$.

э

Examples:

э

Examples:

• If $f \in X \to \mathbb{K}$ is linear, then $||f||_{cb} = ||f||$.

< <p>I > < </p>

Examples:

• If $f \in X \to \mathbb{K}$ is linear, then $||f||_{cb} = ||f||$. Let $n \in \mathbb{N}$ and $[x_{ij}] \in M_n(X)$. Then $[f(x_{ij})] \in M_n$, so

$$\|[f(x_{ij})]\|_n = \sup\{\langle [f(x_{ij})]\alpha,\beta\rangle \mid \alpha,\beta \in B_{\ell_2^n}\}.$$

() <) <)
 () <)
 () <)
</p>

Examples:

• If $f \in X \to \mathbb{K}$ is linear, then $||f||_{cb} = ||f||$. Let $n \in \mathbb{N}$ and $[x_{ij}] \in M_n(X)$. Then $[f(x_{ij})] \in M_n$, so

$$\|[f(x_{ij})]\|_{n} = \sup\{\langle [f(x_{ij})]\alpha,\beta\rangle \mid \alpha,\beta \in \mathcal{B}_{\ell_{2}^{n}}\}.$$

If $\alpha = (\alpha_i)_{i=1}^n$ and $\beta = (\beta_i)_{i=1}^n$, then

$$\langle [f(\mathbf{x}_{ij})]\alpha,\beta\rangle = \sum_{i,j} \alpha_j \bar{\beta}_i f(\mathbf{x}_{ij}) = f\Big(\sum_{i,j} \alpha_j \bar{\beta}_i \mathbf{x}_{ij}\Big) \leq \|f\| \Big\| \sum_{i,j} \alpha_j \bar{\beta}_i \mathbf{x}_{ij} \Big\|.$$

4 3 5 4 3 5 5

Examples:

• If $f \in X \to \mathbb{K}$ is linear, then $||f||_{cb} = ||f||$. Let $n \in \mathbb{N}$ and $[x_{ij}] \in M_n(X)$. Then $[f(x_{ij})] \in M_n$, so

$$\|[f(\mathbf{x}_{ij})]\|_{n} = \sup\{\langle [f(\mathbf{x}_{ij})]\alpha,\beta\rangle \mid \alpha,\beta \in \mathbf{B}_{\ell_{2}^{n}}\}.$$

If $\alpha = (\alpha_i)_{i=1}^n$ and $\beta = (\beta_i)_{i=1}^n$, then

$$\langle [f(\mathbf{x}_{ij})]\alpha,\beta\rangle = \sum_{i,j} \alpha_j \bar{\beta}_i f(\mathbf{x}_{ij}) = f\Big(\sum_{i,j} \alpha_j \bar{\beta}_i \mathbf{x}_{ij}\Big) \leq \|f\| \Big\| \sum_{i,j} \alpha_j \bar{\beta}_i \mathbf{x}_{ij} \Big\|.$$

Notice that

$$\left\|\sum_{i,j}\alpha_{j}\bar{\beta}_{i}\boldsymbol{x}_{ij}\right\| = \left\|\begin{bmatrix}\bar{\beta}_{1}\mathrm{Id} & \dots & \bar{\beta}_{n}\mathrm{Id}\end{bmatrix}[\boldsymbol{x}_{ij}]\begin{bmatrix}\alpha_{1}\mathrm{Id}\\\vdots\\\alpha_{n}\mathrm{Id}\end{bmatrix}\right\| \leq \|[\boldsymbol{x}_{ij}]\|_{n}$$

4 3 5 4 3 5 5

Examples:

• If $f \in X \to \mathbb{K}$ is linear, then $||f||_{cb} = ||f||$. Let $n \in \mathbb{N}$ and $[x_{ij}] \in M_n(X)$. Then $[f(x_{ij})] \in M_n$, so

$$\|[f(x_{ij})]\|_n = \sup\{\langle [f(x_{ij})]\alpha,\beta\rangle \mid \alpha,\beta \in \mathcal{B}_{\ell_2^n}\}.$$

If $\alpha = (\alpha_i)_{i=1}^n$ and $\beta = (\beta_i)_{i=1}^n$, then

$$\langle [f(\mathbf{x}_{ij})]\alpha,\beta\rangle = \sum_{i,j} \alpha_j \bar{\beta}_i f(\mathbf{x}_{ij}) = f\Big(\sum_{i,j} \alpha_j \bar{\beta}_i \mathbf{x}_{ij}\Big) \leq \|f\| \Big\| \sum_{i,j} \alpha_j \bar{\beta}_i \mathbf{x}_{ij} \Big\|.$$

Notice that

$$\left\|\sum_{i,j}\alpha_{j}\bar{\beta}_{i}\boldsymbol{x}_{ij}\right\| = \left\|\begin{bmatrix}\bar{\beta}_{1}\mathrm{Id} & \dots & \bar{\beta}_{n}\mathrm{Id}\end{bmatrix}[\boldsymbol{x}_{ij}]\begin{bmatrix}\alpha_{1}\mathrm{Id}\\\vdots\\\alpha_{n}\mathrm{Id}\end{bmatrix}\right\| \leq \|[\boldsymbol{x}_{ij}]\|_{n}$$

So, $||f_n||_n \leq ||f||$ for all $n \in \mathbb{N}$.

3 N 4

< A >

3 > < 3

Alternatively, let *X* be a vector space and $(\|\cdot\|_n)_n$ be norms on $(M_n(X))_n$. Consider the following:

Image: A Image: A

< A >

Alternatively, let *X* be a vector space and $(\| \cdot \|_n)_n$ be norms on $(M_n(X))_n$. Consider the following:

(**R1**) $\|\alpha x\beta\|_n \leq \|\alpha\| \|x\|_n \|\beta\|$ for all $\alpha, \beta \in M_n$ and all $x \in M_n(X)$.

< 同 > < 三 > < 三 >

Alternatively, let *X* be a vector space and $(\|\cdot\|_n)_n$ be norms on $(M_n(X))_n$. Consider the following:

(R1) $\|\alpha x\beta\|_n \leq \|\alpha\| \|x\|_n \|\beta\|$ for all $\alpha, \beta \in M_n$ and all $x \in M_n(X)$. (R2) For all $n, m \in \mathbb{N}$, all $x \in M_n(X)$ and all $y \in M_m(X)$, we have

$$\left\| \begin{bmatrix} x & 0\\ 0 & y \end{bmatrix} \right\|_{n+m} = \max\{ \|x\|_n, \|y\|_m \}.$$

・ 同 ト イ ヨ ト イ ヨ ト

Alternatively, let *X* be a vector space and $(\|\cdot\|_n)_n$ be norms on $(M_n(X))_n$. Consider the following:

(R1) $\|\alpha x\beta\|_n \leq \|\alpha\| \|x\|_n \|\beta\|$ for all $\alpha, \beta \in M_n$ and all $x \in M_n(X)$. (R2) For all $n, m \in \mathbb{N}$, all $x \in M_n(X)$ and all $y \in M_m(X)$, we have

$$\begin{bmatrix} \boldsymbol{x} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{y} \end{bmatrix} \Big\|_{n+m} = \max\{\|\boldsymbol{x}\|_n, \|\boldsymbol{y}\|_m\}.$$

Clearly, if *X* is an operator space, the sequence $(\|\cdot\|_n)_n$ of norms on $(M_n(X))_n$ given by the inclusion $X \subset \mathcal{B}(H)$ satisfies (R1) and (R2).

Alternatively, let *X* be a vector space and $(\|\cdot\|_n)_n$ be norms on $(M_n(X))_n$. Consider the following:

(R1) $\|\alpha x\beta\|_n \leq \|\alpha\| \|x\|_n \|\beta\|$ for all $\alpha, \beta \in M_n$ and all $x \in M_n(X)$. **(R2)** For all $n, m \in \mathbb{N}$, all $x \in M_n(X)$ and all $y \in M_m(X)$, we have

$$\begin{bmatrix} \boldsymbol{x} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{y} \end{bmatrix} \Big\|_{n+m} = \max\{\|\boldsymbol{x}\|_n, \|\boldsymbol{y}\|_m\}.$$

Clearly, if X is an operator space, the sequence $(\|\cdot\|_n)_n$ of norms on $(M_n(X))_n$ given by the inclusion $X \subset \mathcal{B}(H)$ satisfies (R1) and (R2).

Theorem (Z.-J. Ruan, 1988 and 2003)

Let X be a vector space and $(\|\cdot\|_n)_n$ be a sequence of norms on $(M_n(X))_n$. Then X is completely isometrically isomorphic to a subspace of $\mathcal{B}(H)$, for some Hilbert space H, if and only if $(\|\cdot\|_n)_n$ satisfies (R1) and (R2).

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

в.	М.	Br	ad	a

æ

<ロ> <同> <同> <同> < 同> < 同>

• Let *X* be a Banach space and consider its canonical embedding into the abelian C*-algebra $C(B_{X*})$. The canonical isomorphim between $M_n(C(B_{X*}))$ and $C(B_{X*}, M_n)$ gives us an operator space structure on *X*.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let *X* be a Banach space and consider its canonical embedding into the abelian C*-algebra $C(B_{X*})$. The canonical isomorphim between $M_n(C(B_{X*}))$ and $C(B_{X*}, M_n)$ gives us an operator space structure on *X*.

The operator space structure on X defined above is called its **minimal** operator space structure and this operator space is denoted by MIN(X).

4 3 5 4 3 5 5

• Let *X* be a Banach space and consider its canonical embedding into the abelian C*-algebra $C(B_{X*})$. The canonical isomorphim between $M_n(C(B_{X*}))$ and $C(B_{X*}, M_n)$ gives us an operator space structure on *X*.

The operator space structure on X defined above is called its **minimal** operator space structure and this operator space is denoted by MIN(X).

Proposition

Let X be an operator space and A be an abelian C^{*}-algebra. Then every bounded linear map $u : X \to A$ satisfies $||u|| = ||u||_{cb}$.

• Let *X* be a Banach space and consider its canonical embedding into the abelian C*-algebra $C(B_{X*})$. The canonical isomorphim between $M_n(C(B_{X*}))$ and $C(B_{X*}, M_n)$ gives us an operator space structure on *X*.

The operator space structure on X defined above is called its **minimal** operator space structure and this operator space is denoted by MIN(X).

Proposition

Let X be an operator space and A be an abelian C^{*}-algebra. Then every bounded linear map $u : X \to A$ satisfies $||u|| = ||u||_{cb}$.

For any operator space Y, we have

$$||f: Y \to \operatorname{MIN}(X)||_{\operatorname{cb}} = ||f: Y \to \operatorname{MIN}(X)||$$

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

в.	М.	Br	ad	a

æ

<ロ> <同> <同> <同> < 同> < 同>

 Let X be a Banach space. The maximal operator space structure on X, denoted by MAX(X), is given by

$$\|[x_{ij}]\|_n = \sup \left\{ \|f_n([x_{ij}])\|_n \mid Y \text{ operator space and } f \in B_{L(X,Y)} \right\}.$$

< ロ > < 同 > < 回 > < 回 >

 Let X be a Banach space. The maximal operator space structure on X, denoted by MAX(X), is given by

 $\|[x_{ij}]\|_n = \sup \left\{ \|f_n([x_{ij}])\|_n \mid Y \text{ operator space and } f \in B_{L(X,Y)} \right\}.$

For any operator space Y, we have

$$\|f: \operatorname{MAX}(X) \to Y\|_{\operatorname{cb}} = \|f: \operatorname{MAX}(X) \to Y\|$$

化基本 化基本

 Let X be a Banach space. The maximal operator space structure on X, denoted by MAX(X), is given by

 $\|[x_{ij}]\|_n = \sup \left\{ \|f_n([x_{ij}])\|_n \mid Y \text{ operator space and } f \in B_{L(X,Y)} \right\}.$

For any operator space Y, we have

 $\|f: \mathrm{MAX}(X) \to Y\|_{\mathrm{cb}} = \|f: \mathrm{MAX}(X) \to Y\|$

• The Hilbert space ℓ_2 is isometric to both

 $\boldsymbol{R} = \{\boldsymbol{a} \in \mathcal{B}(\ell_2) \mid \boldsymbol{a}_{ij} \neq \boldsymbol{0} \Rightarrow i = \boldsymbol{1}\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Let X be a Banach space. The maximal operator space structure on X, denoted by MAX(X), is given by

 $\|[x_{ij}]\|_n = \sup \left\{ \|f_n([x_{ij}])\|_n \mid Y \text{ operator space and } f \in B_{L(X,Y)} \right\}.$

For any operator space Y, we have

$$\|f: \operatorname{MAX}(X) \to Y\|_{\operatorname{cb}} = \|f: \operatorname{MAX}(X) \to Y\|$$

• The Hilbert space ℓ_2 is isometric to both

$$R = \{ a \in \mathcal{B}(\ell_2) \mid a_{ij} \neq 0 \Rightarrow i = 1 \}$$

and

$$\boldsymbol{C} = \{ \boldsymbol{a} \in \mathcal{B}(\ell_2) \mid \boldsymbol{a}_{ij} \neq \boldsymbol{0} \Rightarrow j = \boldsymbol{1} \}.$$

4 B 6 4 B 6

 Let X be a Banach space. The maximal operator space structure on X, denoted by MAX(X), is given by

 $\|[x_{ij}]\|_n = \sup \Big\{ \|f_n([x_{ij}])\|_n \mid Y \text{ operator space and } f \in B_{L(X,Y)} \Big\}.$

For any operator space Y, we have

 $\|f: \mathrm{MAX}(X) \to Y\|_{\mathrm{cb}} = \|f: \mathrm{MAX}(X) \to Y\|$

• The Hilbert space ℓ_2 is isometric to both

$$R = \{ a \in \mathcal{B}(\ell_2) \mid a_{ij} \neq 0 \Rightarrow i = 1 \}$$

and

$$C = \{ a \in \mathcal{B}(\ell_2) \mid a_{ij} \neq 0 \Rightarrow j = 1 \}.$$

 If A is a C*-algebra, so is each M_n(A). So, C*-algebras have unique operator space structures.

B. M. Braga

в.	М.	Br	ad	a

æ

<ロ> <同> <同> <同> < 同> < 同>

• Given operator spaces X and Y, CB(X, Y) is an operator space.

(a)

• Given operator spaces X and Y, CB(X, Y) is an operator space. Precisely, given $[f_{ij}] \in M_n(CB(X, Y)) \cong CB(X, M_n(Y))$, we have

 $\|[f_{ij}]\|_{\mathbf{M}_n(\mathbf{CB}(X,Y))} = \|[f_{ij}]: X \to \mathbf{M}_n(Y)\|_{\mathrm{cb}}.$

• Given operator spaces X and Y, CB(X, Y) is an operator space. Precisely, given $[f_{ij}] \in M_n(CB(X, Y)) \cong CB(X, M_n(Y))$, we have

$$\|[f_{ij}]\|_{\mathbf{M}_n(\mathbf{CB}(X,Y))} = \|[f_{ij}]: X \to \mathbf{M}_n(Y)\|_{\mathbf{cb}}.$$

• The dual space of an operator space is an operator space.

イロト イポト イラト イラト

• Given operator spaces X and Y, CB(X, Y) is an operator space. Precisely, given $[f_{ij}] \in M_n(CB(X, Y)) \cong CB(X, M_n(Y))$, we have

$$\|[f_{ij}]\|_{M_n(CB(X,Y))} = \|[f_{ij}]: X \to M_n(Y)\|_{cb}.$$

 The dual space of an operator space is an operator space. This is given by the canonical (algebraic) isomorphism X* ≅ CB(X, K).

イロト イポト イラト イラト

• Given operator spaces X and Y, CB(X, Y) is an operator space. Precisely, given $[f_{ij}] \in M_n(CB(X, Y)) \cong CB(X, M_n(Y))$, we have

 $\|[f_{ij}]\|_{M_n(CB(X,Y))} = \|[f_{ij}]: X \to M_n(Y)\|_{cb}.$

The dual space of an operator space is an operator space.
 This is given by the canonical (algebraic) isomorphism
 X* ≅ CB(X, K).

Proposition

The canonical identity $X \rightarrow X^{**}$ is a complete isometry.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Given operator spaces X and Y, CB(X, Y) is an operator space. Precisely, given $[f_{ij}] \in M_n(CB(X, Y)) \cong CB(X, M_n(Y))$, we have

 $\|[f_{ij}]\|_{M_n(CB(X,Y))} = \|[f_{ij}]: X \to M_n(Y)\|_{cb}.$

The dual space of an operator space is an operator space.
 This is given by the canonical (algebraic) isomorphism
 X* ≅ CB(X, K).

Proposition

The canonical identity $X \rightarrow X^{**}$ is a complete isometry.

While all Banach spaces are locally reflexive, this is not the case for operator spaces. E.g.: $\mathcal{K}(\ell_2)$. On the other hand, any von Neumann algebra predual is locally reflexive (**Effros, Junge, and Ruan, 2000**).

< 🗇 🕨

3 > < 3

Problem

Is there an "interesting" nonlinear theory for operator spaces?

< 🗇 🕨 < 🖻 🕨

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

∃ → < ∃</p>

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

Let X and Y be operator spaces and $f : X \rightarrow Y$ be a map.

< A >

4 3 1 4

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

Let X and Y be operator spaces and $f : X \to Y$ be a map.

• Let
$$\omega_f^{\mathrm{cb}}(t) = \sup_n \omega_{f_n}(t)$$
.

< A >

4 3 1 4

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

Let X and Y be operator spaces and $f : X \to Y$ be a map.

- Let $\omega_f^{\mathrm{cb}}(t) = \sup_n \omega_{f_n}(t)$.
- *f* is completely coarse if $\omega_f^{\rm cb}(t) < \infty$ for all t > 0.

A D b 4 A b

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

Let X and Y be operator spaces and $f : X \rightarrow Y$ be a map.

- Let $\omega_f^{\mathrm{cb}}(t) = \sup_n \omega_{f_n}(t)$.
- *f* is completely coarse if ω_f^{cb}(t) < ∞ for all t > 0.
 In other words, if for all r > 0 there is s > 0 so that

 $||[x_{ij}] - [y_{ij}]||_n \leq r \text{ implies } ||f_n([x_{ij}]) - f_n([y_{ij}])||_n \leq s$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in \mathbf{M}_n(X)$.

ヘロト 人間 とくほう くほう

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

Let X and Y be operator spaces and $f : X \to Y$ be a map.

- Let $\omega_f^{\mathrm{cb}}(t) = \sup_n \omega_{f_n}(t)$.
- *f* is completely coarse if ω_f^{cb}(t) < ∞ for all t > 0.
 In other words, if for all r > 0 there is s > 0 so that

 $\|[x_{ij}] - [y_{ij}]\|_n \leq r \text{ implies } \|f_n([x_{ij}]) - f_n([y_{ij}])\|_n \leq s$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in M_n(X)$. This is does not work!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

Is there an "interesting" nonlinear theory for operator spaces?

A natural approach:

Let X and Y be operator spaces and $f : X \to Y$ be a map.

- Let $\omega_f^{\mathrm{cb}}(t) = \sup_n \omega_{f_n}(t)$.
- *f* is completely coarse if ω_f^{cb}(t) < ∞ for all t > 0.
 In other words, if for all r > 0 there is s > 0 so that

 $||[x_{ij}] - [y_{ij}]||_n \leq r \text{ implies } ||f_n([x_{ij}]) - f_n([y_{ij}])||_n \leq s$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in M_n(X)$.

This is does not work!

Theorem (Braga and Chávez-Domínguez, 2021)

If f is a completely coarse map between operator spaces and f(0) = 0, then f is \mathbb{R} -linear.

Nonlinear geometry of operator spaces, Second try

-

< A >

Nonlinear geometry of operator spaces, Second try

The naive approach miserably failed. What now?

ヨトィヨト

Image: A math

Nonlinear geometry of operator spaces, Second try

The naive approach miserably failed. What now? Let us step back and consider the following linear notion.

< A >

The naive approach miserably failed. What now?

Let us step back and consider the following linear notion.

Definition

Let X and Y be operator spaces.

< 🗇 🕨

The naive approach miserably failed. What now?

Let us step back and consider the following linear notion.

Definition

Let X and Y be operator spaces.

A sequence (fⁿ: X → Y)_n is an almost complete K-isomorphic embedding if each fⁿ is K-linear and there is K > 0 so that each amplification fⁿ_n: M_n(X) → M_n(Y) is a K-isomorphic embedding with distortion at most K.

() <) <)
 () <)
 () <)
</p>

The naive approach miserably failed. What now?

Let us step back and consider the following linear notion.

Definition

Let X and Y be operator spaces.

- A sequence $(f^n : X \to Y)_n$ is an **almost complete** \mathbb{K} -isomorphic **embedding** if each f^n is \mathbb{K} -linear and there is K > 0 so that each amplification $f_n^n : M_n(X) \to M_n(Y)$ is a \mathbb{K} -isomorphic embedding with distortion at most K.
- If K = 1, (fⁿ : X → Y)_n is an almost complete K-linear isometric embedding.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

The naive approach miserably failed. What now?

Let us step back and consider the following linear notion.

Definition

Let X and Y be operator spaces.

- A sequence $(f^n : X \to Y)_n$ is an **almost complete** \mathbb{K} -isomorphic **embedding** if each f^n is \mathbb{K} -linear and there is K > 0 so that each amplification $f_n^n : M_n(X) \to M_n(Y)$ is a \mathbb{K} -isomorphic embedding with distortion at most K.
- If K = 1, $(f^n : X \to Y)_n$ is an almost complete \mathbb{K} -linear isometric embedding.

 $\begin{array}{ll} \mbox{Clearly:} & \mbox{complete \mathbb{K}-isomorphic embedding} \Rightarrow \mbox{almost complete \mathbb{K}-isomorphic embedding} \end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The naive approach miserably failed. What now?

Let us step back and consider the following linear notion.

Definition

Let X and Y be operator spaces.

- A sequence (fⁿ : X → Y)_n is an almost complete K-isomorphic embedding if each fⁿ is K-linear and there is K > 0 so that each amplification fⁿ_n : M_n(X) → M_n(Y) is a K-isomorphic embedding with distortion at most K.
- If K = 1, $(f^n : X \to Y)_n$ is an almost complete \mathbb{K} -linear isometric embedding.
 - $\begin{array}{ll} \mbox{Clearly:} & \mbox{complete \mathbb{K}-isomorphic embedding} \Rightarrow \mbox{almost complete \mathbb{K}-isomorphic embedding} \end{array}$
 - complete K-linear isometric embedding ⇒ almost complete K-linear isometric embedding

-

Theorem (Braga and Chávez-Domínguez, 2021)

There are \mathbb{C} -operator spaces X and Y so that X almost completely \mathbb{C} -isomorphically embeds into Y, but so that X does not completely \mathbb{R} -isomorphically embed into Y.

Theorem (Braga and Chávez-Domínguez, 2021)

There are \mathbb{C} -operator spaces X and Y so that X almost completely \mathbb{C} -isomorphically embeds into Y, but so that X does not completely \mathbb{R} -isomorphically embed into Y.

Sketch of the proof.

Theorem (Braga and Chávez-Domínguez, 2021)

There are \mathbb{C} -operator spaces X and Y so that X almost completely \mathbb{C} -isomorphically embeds into Y, but so that X does not completely \mathbb{R} -isomorphically embed into Y.

Sketch of the proof.

Given an operator space X, there is an operator space structure on X, $MIN_n(X)$, which agrees with the one of X up to the *n*-level and so that

$$||f: Y \to \operatorname{MIN}_n(X)||_{\operatorname{cb}} = ||f_n: \operatorname{M}_n(Y) \to \operatorname{M}_n(X)||_n$$

Theorem (Braga and Chávez-Domínguez, 2021)

There are \mathbb{C} -operator spaces X and Y so that X almost completely \mathbb{C} -isomorphically embeds into Y, but so that X does not completely \mathbb{R} -isomorphically embed into Y.

Sketch of the proof.

Given an operator space X, there is an operator space structure on X, $MIN_n(X)$, which agrees with the one of X up to the *n*-level and so that

$$||f: Y \to \operatorname{MIN}_n(X)||_{\operatorname{cb}} = ||f_n: \operatorname{M}_n(Y) \to \operatorname{M}_n(X)||_n$$

Let *R* be ℓ_2 with the row operator space structure and let *Y* be

$$Y = \bigoplus_{n \in \mathbb{N}} \operatorname{MIN}_n(R)$$

Theorem (Braga and Chávez-Domínguez, 2021)

There are \mathbb{C} -operator spaces *X* and *Y* so that *X* almost completely \mathbb{C} -isomorphically embeds into *Y*, but so that *X* does not completely \mathbb{R} -isomorphically embed into *Y*.

Sketch of the proof.

Given an operator space X, there is an operator space structure on X, $MIN_n(X)$, which agrees with the one of X up to the *n*-level and so that

$$||f: Y \to \operatorname{MIN}_n(X)||_{\operatorname{cb}} = ||f_n: \operatorname{M}_n(Y) \to \operatorname{M}_n(X)||_n$$

Let *R* be ℓ_2 with the row operator space structure and let *Y* be

$$Y = \bigoplus_{n \in \mathbb{N}} \operatorname{MIN}_n(R)$$

R clearly almost completely \mathbb{C} -isomorphically embeds into *Y*.

Theorem (Braga and Chávez-Domínguez, 2021)

There are \mathbb{C} -operator spaces *X* and *Y* so that *X* almost completely \mathbb{C} -isomorphically embeds into *Y*, but so that *X* does not completely \mathbb{R} -isomorphically embed into *Y*.

Sketch of the proof.

Given an operator space X, there is an operator space structure on X, $MIN_n(X)$, which agrees with the one of X up to the *n*-level and so that

$$||f: Y \to \operatorname{MIN}_n(X)||_{\operatorname{cb}} = ||f_n: \operatorname{M}_n(Y) \to \operatorname{M}_n(X)||_n$$

Let *R* be ℓ_2 with the row operator space structure and let *Y* be

$$Y = \bigoplus_{n \in \mathbb{N}} \operatorname{MIN}_n(R)$$

R clearly almost completely \mathbb{C} -isomorphically embeds into *Y*.

R does not completely \mathbb{R} -isomorphically embed into *Y*.

We apply the same naive approach to almost complete isomorphisms.

We apply the same naive approach to almost complete isomorphisms.

Definition

Let *X* and *Y* be operator spaces. We say that *X* **almost completely coarsely embeds into** *Y* if there is a sequence $(f^n : X \to Y)_n$ so that the amplifications $(f_n^n : M_n(X) \to M_n(Y))_n$ are equi-coarse embeddings, i.e., there are functions $\omega, \rho : [0, \infty) \to [0, \infty)$ so that $\lim_{t\to\infty} \rho(t) = \infty$ and so that

 $\rho(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n) \leq \|f_n^n([\mathbf{x}_{ij}]) - f_n^n([\mathbf{y}_{ij}])\|_n \leq \omega(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n)$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in M_n(X)$.

We apply the same naive approach to almost complete isomorphisms.

Definition

Let *X* and *Y* be operator spaces. We say that *X* **almost completely coarsely embeds into** *Y* if there is a sequence $(f^n : X \to Y)_n$ so that the amplifications $(f_n^n : M_n(X) \to M_n(Y))_n$ are equi-coarse embeddings, i.e., there are functions $\omega, \rho : [0, \infty) \to [0, \infty)$ so that $\lim_{t\to\infty} \rho(t) = \infty$ and so that

$$\rho(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n) \leq \|f_n^n([\mathbf{x}_{ij}]) - f_n^n([\mathbf{y}_{ij}])\|_n \leq \omega(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n)$$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in M_n(X)$.

Is this an "interesting" notion? We need:

- (四) - (日) - (1)

We apply the same naive approach to almost complete isomorphisms.

Definition

Let *X* and *Y* be operator spaces. We say that *X* **almost completely coarsely embeds into** *Y* if there is a sequence $(f^n : X \to Y)_n$ so that the amplifications $(f_n^n : M_n(X) \to M_n(Y))_n$ are equi-coarse embeddings, i.e., there are functions $\omega, \rho : [0, \infty) \to [0, \infty)$ so that $\lim_{t\to\infty} \rho(t) = \infty$ and so that

$$\rho(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n) \leq \|f_n^n([\mathbf{x}_{ij}]) - f_n^n([\mathbf{y}_{ij}])\|_n \leq \omega(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n)$$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in M_n(X)$.

Is this an "interesting" notion? We need:

I The nonlinear embedding must be strong enough to recover linear aspects of the operator structures

(日)

We apply the same naive approach to almost complete isomorphisms.

Definition

Let *X* and *Y* be operator spaces. We say that *X* **almost completely coarsely embeds into** *Y* if there is a sequence $(f^n : X \to Y)_n$ so that the amplifications $(f_n^n : M_n(X) \to M_n(Y))_n$ are equi-coarse embeddings, i.e., there are functions $\omega, \rho : [0, \infty) \to [0, \infty)$ so that $\lim_{t\to\infty} \rho(t) = \infty$ and so that

$$\rho(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n) \leq \|f_n^n([\mathbf{x}_{ij}]) - f_n^n([\mathbf{y}_{ij}])\|_n \leq \omega(\|[\mathbf{x}_{ij}] - [\mathbf{y}_{ij}]\|_n)$$

for all $n \in \mathbb{N}$ and all $[x_{ij}], [y_{ij}] \in M_n(X)$.

Is this an "interesting" notion? We need:

- I The nonlinear embedding must be strong enough to recover linear aspects of the operator structures
- II The nonlinear embedding must be strictly weaker than almost complete isomorphic embeddability

Β.	Μ.	Braga
ъ.		Biugu

Nonlinear geometry of operator spaces

в.	М.	Br	ad	a

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Given a Banach space *Y* and an ultrafilter \mathcal{U} on \mathbb{N} , the **ultraproduct** of *Y* is defined by

$$Y^{\mathbb{N}}/\mathcal{U} = \Big\{ (y_k)_k \in Y^{\mathbb{N}} \mid \sup_k \|y_k\| < \infty \Big\} / \Big\{ (y_k)_k \in Y^{\mathbb{N}} \mid \lim_{k,\mathcal{U}} \|y_k\| = 0 \Big\}.$$

(a)

Given a Banach space *Y* and an ultrafilter \mathcal{U} on \mathbb{N} , the **ultraproduct** of *Y* is defined by

$$\mathbf{Y}^{\mathbb{N}}/\mathcal{U} = \Big\{ (\mathbf{y}_k)_k \in \mathbf{Y}^{\mathbb{N}} \mid \sup_k \|\mathbf{y}_k\| < \infty \Big\} / \Big\{ (\mathbf{y}_k)_k \in \mathbf{Y}^{\mathbb{N}} \mid \lim_{k,\mathcal{U}} \|\mathbf{y}_k\| = \mathbf{0} \Big\}.$$

The natural operator structure of $Y^{\mathbb{N}}/\mathcal{U}$: given $[(x_{ii}^{(k)})_k] \in M_n(Y^{\mathbb{N}}/\mathcal{U})$,

$$\|[(x_{ij}^{(k)})_n]\|_n = \lim_{k,\mathcal{U}} \|[x_{ij}^{(k)}]\|_{\mathbf{M}_n(Y)}.$$

Image: A math

Given a Banach space *Y* and an ultrafilter \mathcal{U} on \mathbb{N} , the **ultraproduct** of *Y* is defined by

$$\mathbf{Y}^{\mathbb{N}}/\mathcal{U} = \Big\{ (\mathbf{y}_k)_k \in \mathbf{Y}^{\mathbb{N}} \mid \sup_k \|\mathbf{y}_k\| < \infty \Big\} / \Big\{ (\mathbf{y}_k)_k \in \mathbf{Y}^{\mathbb{N}} \mid \lim_{k,\mathcal{U}} \|\mathbf{y}_k\| = \mathbf{0} \Big\}.$$

The natural operator structure of $Y^{\mathbb{N}}/\mathcal{U}$: given $[(x_{ii}^{(k)})_k] \in M_n(Y^{\mathbb{N}}/\mathcal{U})$,

$$\|[(x_{ij}^{(k)})_n]\|_n = \lim_{k,\mathcal{U}} \|[x_{ij}^{(k)}]\|_{\mathbf{M}_n(Y)}.$$

Proposition (Braga and Chávez-Domínguez, 2021)

If an operator space X almost completely coarsely embeds into an operator space Y, then X completely \mathbb{R} -isomorphically embeds into $Y^{\mathbb{N}}/\mathcal{U}$ for any nonprincipal ultrafilter \mathcal{U} on \mathbb{N} .

Given a Banach space *Y* and an ultrafilter \mathcal{U} on \mathbb{N} , the **ultraproduct** of *Y* is defined by

$$\mathbf{Y}^{\mathbb{N}}/\mathcal{U} = \Big\{ (\mathbf{y}_k)_k \in \mathbf{Y}^{\mathbb{N}} \mid \sup_k \|\mathbf{y}_k\| < \infty \Big\} / \Big\{ (\mathbf{y}_k)_k \in \mathbf{Y}^{\mathbb{N}} \mid \lim_{k,\mathcal{U}} \|\mathbf{y}_k\| = \mathbf{0} \Big\}.$$

The natural operator structure of $Y^{\mathbb{N}}/\mathcal{U}$: given $[(x_{ii}^{(k)})_k] \in M_n(Y^{\mathbb{N}}/\mathcal{U})$,

$$\|[(x_{ij}^{(k)})_n]\|_n = \lim_{k,\mathcal{U}} \|[x_{ij}^{(k)}]\|_{\mathbf{M}_n(Y)}.$$

Proposition (Braga and Chávez-Domínguez, 2021)

If an operator space X almost completely coarsely embeds into an operator space Y, then X completely \mathbb{R} -isomorphically embeds into $Y^{\mathbb{N}}/\mathcal{U}$ for any nonprincipal ultrafilter \mathcal{U} on \mathbb{N} .

Sketch of the proof.

Given $(f^n : X \to Y)_n$, $F(x) = (f^n(x))_n$ is completely coarse.

Nonlinear geometry of operator spaces

April 21st, 2021 22/39

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem (Pisier, 1996)

There exists an operator space OH so that

Image: A Image: A

Image: A math

Theorem (Pisier, 1996)

There exists an operator space OH so that

• OH is isometric as a Banach space to ℓ_2 , and

< 🗇 🕨

★ Ξ →

Theorem (Pisier, 1996)

There exists an operator space OH so that

- OH is isometric as a Banach space to ℓ_2 , and
- the canonical identification between OH and OH*, coming from the canonical identification between l₂ and l^{*}/₂, is a complete isometry.

Theorem (Pisier, 1996)

There exists an operator space OH so that

- OH is isometric as a Banach space to ℓ_2 , and
- the canonical identification between OH and OH*, coming from the canonical identification between l₂ and l^{*}₂, is a complete isometry.

Moreover, OH is the unique space, up to complete isometry, satisfying the properties above.

Theorem (Pisier, 1996)

There exists an operator space OH so that

- OH is isometric as a Banach space to ℓ_2 , and
- the canonical identification between OH and OH*, coming from the canonical identification between l₂ and l^{*}₂, is a complete isometry.

Moreover, OH is the unique space, up to complete isometry, satisfying the properties above.

Theorem (Pisier, 1996)

There exists an operator space OH so that

- OH is isometric as a Banach space to ℓ_2 , and
- the canonical identification between OH and OH*, coming from the canonical identification between l₂ and l^{*}₂, is a complete isometry.

Moreover, OH is the unique space, up to complete isometry, satisfying the properties above.

We can then (after some work) get:

Theorem (Pisier, 1996)

There exists an operator space OH so that

- OH is isometric as a Banach space to ℓ₂, and
- the canonical identification between OH and OH*, coming from the canonical identification between l₂ and l^{*}/₂, is a complete isometry.

Moreover, OH is the unique space, up to complete isometry, satisfying the properties above.

We can then (after some work) get:

Theorem (Braga and Chávez-Domínguez, 2021)

If an infinite dimensional \mathbb{C} -operator space X almost completely coarsely embeds into OH, then X is completely \mathbb{C} -isomorphic to OH.

What about Item II?

Nonlinear ge

Nonlinear geometry of operator spaces

April 21st, 2021 23/39

æ

(日) (四) (日) (日) (日)

What about Item II?

Problem (Item II)

Is almost complete coarse embeddability strictly weaker than almost complete isomorphic embeddability?

∃ → < ∃</p>

What about Item II?

Problem (Item II)

Is almost complete coarse embeddability strictly weaker than almost complete isomorphic embeddability?

Answer: Yes!

∃ → < ∃</p>

Problem (Item II)

Is almost complete coarse embeddability strictly weaker than almost complete isomorphic embeddability?

Answer: Yes!

We actually even have that almost complete **Lipschitz** embeddability is strictly weaker than almost complete isomorphic embeddability.

Image: A Image: A

Problem (Item II)

Is almost complete coarse embeddability strictly weaker than almost complete isomorphic embeddability?

Answer: Yes!

We actually even have that almost complete **Lipschitz** embeddability is strictly weaker than almost complete isomorphic embeddability.

Definition

Let *X* and *Y* be operator spaces.

Problem (Item II)

Is almost complete coarse embeddability strictly weaker than almost complete isomorphic embeddability?

Answer: Yes!

We actually even have that almost complete **Lipschitz** embeddability is strictly weaker than almost complete isomorphic embeddability.

Definition

Let X and Y be operator spaces.

 A sequence (fⁿ : X → Y)_n is an almost complete Lipschitz embedding if there is K > 0 so that each amplification fⁿ_n : M_n(X) → M_n(Y) is a Lipschitz embedding with distortion at most K.

Problem (Item II)

Is almost complete coarse embeddability strictly weaker than almost complete isomorphic embeddability?

Answer: Yes!

We actually even have that almost complete **Lipschitz** embeddability is strictly weaker than almost complete isomorphic embeddability.

Definition

Let *X* and *Y* be operator spaces.

- A sequence $(f^n : X \to Y)_n$ is an **almost complete Lipschitz embedding** if there is K > 0 so that each amplification $f_n^n : M_n(X) \to M_n(Y)$ is a Lipschitz embedding with distortion at most K.
- If K = 1, $(f^n : X \to Y)_n$ is an almost complete isometric embedding.

Image: A Image: A

< <p>I > < </p>

Given a metric space X, one assigns to it a Banach space $\mathcal{F}(X)$ which is called the **Lipschitz-free (Banach) space of** X.

∃ → < ∃</p>

Image: A mage: A ma

Given a metric space X, one assigns to it a Banach space $\mathcal{F}(X)$ which is called the **Lipschitz-free (Banach) space of** X.

We point out some of its most iconic properties:

< A >

Given a metric space X, one assigns to it a Banach space $\mathcal{F}(X)$ which is called the **Lipschitz-free (Banach) space of** X.

We point out some of its most iconic properties:

• This construction comes equipped with a canonical isometry $\delta_X : X \to \mathcal{F}(X)$.

< <p>I > < <p>I

Given a metric space X, one assigns to it a Banach space $\mathcal{F}(X)$ which is called the **Lipschitz-free (Banach) space of** X.

We point out some of its most iconic properties:

- This construction comes equipped with a canonical isometry $\delta_X : X \to \mathcal{F}(X)$.
- For any Lipschitz map $L: X \to Y$ there is an unique linear map $\tilde{L}: \mathcal{F}(X) \to \mathcal{F}(Y)$ with $\|\tilde{L}\| = \operatorname{Lip}(L)$ and so that the following diagram commutes

$$\begin{array}{c} X \xrightarrow{L} Y \\ \downarrow \\ \delta_X \downarrow & \downarrow \\ \mathcal{F}(X) \xrightarrow{\tilde{L}} \mathcal{F}(Y) \end{array}$$

(日)

Given a metric space X, one assigns to it a Banach space $\mathcal{F}(X)$ which is called the **Lipschitz-free (Banach) space of** X.

We point out some of its most iconic properties:

- This construction comes equipped with a canonical isometry $\delta_X : X \to \mathcal{F}(X)$.
- For any Lipschitz map $L: X \to Y$ there is an unique linear map $\tilde{L}: \mathcal{F}(X) \to \mathcal{F}(Y)$ with $\|\tilde{L}\| = \operatorname{Lip}(L)$ and so that the following diagram commutes

$$\begin{array}{c} X \xrightarrow{L} Y \\ \downarrow \\ \delta_X \downarrow & \downarrow \\ \mathcal{F}(X) \xrightarrow{\tilde{L}} \mathcal{F}(Y) \end{array}$$

We mimic $\mathcal{F}(X)$'s construction for our setting.

We call a subset of an operator space an operator metric space.

< A >

We call a subset of an operator space an **operator metric space**. Given pointed operator metric spaces (X, x_0) and (Y, y_0) , we let $\operatorname{Lip}_0(X, Y)$ be the set of Lipschitz maps $f : X \to Y$ so that $f(x_0) = y_0$.

Image: A mathematical straight and the straight and th

We call a subset of an operator space an **operator metric space**. Given pointed operator metric spaces (X, x_0) and (Y, y_0) , we let $\operatorname{Lip}_0(X, Y)$ be the set of Lipschitz maps $f : X \to Y$ so that $f(x_0) = y_0$.

• Say *Y* is an operator space and $y_0 = 0$. For each $n \in \mathbb{N}$, $\operatorname{Lip}_0(X, Y)$ is a Banach space endowed with

$$||f||_{\operatorname{Lip},n} = \operatorname{Lip}(f_n : \operatorname{M}_n(X) \to \operatorname{M}_n(Y))$$

We call a subset of an operator space an **operator metric space**. Given pointed operator metric spaces (X, x_0) and (Y, y_0) , we let $\operatorname{Lip}_0(X, Y)$ be the set of Lipschitz maps $f : X \to Y$ so that $f(x_0) = y_0$.

• Say *Y* is an operator space and $y_0 = 0$. For each $n \in \mathbb{N}$, $\operatorname{Lip}_0(X, Y)$ is a Banach space endowed with

$$||f||_{\operatorname{Lip},n} = \operatorname{Lip}(f_n : \operatorname{M}_n(X) \to \operatorname{M}_n(Y))$$

• Moreover, for all $n \in \mathbb{N}$ and $f \in \operatorname{Lip}_0(X, Y)$,

 $\operatorname{Lip}(f) \leq \operatorname{Lip}(f_n) \leq n^2 \operatorname{Lip}(f)$

We call a subset of an operator space an **operator metric space**. Given pointed operator metric spaces (X, x_0) and (Y, y_0) , we let $\operatorname{Lip}_0(X, Y)$ be the set of Lipschitz maps $f : X \to Y$ so that $f(x_0) = y_0$.

• Say *Y* is an operator space and $y_0 = 0$. For each $n \in \mathbb{N}$, $\operatorname{Lip}_0(X, Y)$ is a Banach space endowed with

$$||f||_{\operatorname{Lip},n} = \operatorname{Lip}(f_n : \operatorname{M}_n(X) \to \operatorname{M}_n(Y))$$

• Moreover, for all $n \in \mathbb{N}$ and $f \in \operatorname{Lip}_0(X, Y)$,

 $\operatorname{Lip}(f) \leq \operatorname{Lip}(f_n) \leq n^2 \operatorname{Lip}(f)$

• For $k \in \mathbb{N}$ and $[f_{ij}] \in M_k(\operatorname{Lip}_0(X, Y))$, we let

$$\|[f_{ij}]\|_{\operatorname{Lip},n,k} = \operatorname{Lip}\left(\left([f_{ij}]: X \to \operatorname{M}_k(Y)\right)_n\right).$$

-

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶

We call a subset of an operator space an **operator metric space**. Given pointed operator metric spaces (X, x_0) and (Y, y_0) , we let $\operatorname{Lip}_0(X, Y)$ be the set of Lipschitz maps $f : X \to Y$ so that $f(x_0) = y_0$.

• Say *Y* is an operator space and $y_0 = 0$. For each $n \in \mathbb{N}$, $\operatorname{Lip}_0(X, Y)$ is a Banach space endowed with

$$||f||_{\operatorname{Lip},n} = \operatorname{Lip}(f_n : \operatorname{M}_n(X) \to \operatorname{M}_n(Y))$$

• Moreover, for all $n \in \mathbb{N}$ and $f \in \operatorname{Lip}_0(X, Y)$,

 $\operatorname{Lip}(f) \leq \operatorname{Lip}(f_n) \leq n^2 \operatorname{Lip}(f)$

• For $k \in \mathbb{N}$ and $[f_{ij}] \in M_k(\operatorname{Lip}_0(X, Y))$, we let

$$\|[f_{ij}]\|_{\operatorname{Lip},n,k} = \operatorname{Lip}\left(\left([f_{ij}]: X \to \operatorname{M}_k(Y)\right)_n\right).$$

Definition

We denote the operator space $(\operatorname{Lip}_0(X, Y), (\|\cdot\|_{\operatorname{Lip},n,k})_{k\in\mathbb{N}})$ defined above by $\operatorname{Lip}_0^n(X, Y)$. **Notice:** By Ruan's characterization, we are OK.

Given a set *Z*, let $[Z]^2 = \{(x, y) \in Z^2 \mid x \neq y\}.$

Given a set *Z*, let $[Z]^2 = \{(x, y) \in Z^2 \mid x \neq y\}.$

• $\operatorname{Lip}_0(X, \mathbb{C})$ inherits the norm given by the embedding

$$f \in \operatorname{Lip}_{0}(X, \mathbb{C}) \mapsto \left(\frac{f(x) - f(y)}{\|x - y\|}\right)_{(x,y) \in [X]^{2}} \in \ell_{\infty}([X]^{2}).$$

Given a set *Z*, let $[Z]^2 = \{(x, y) \in Z^2 \mid x \neq y\}.$

• $\operatorname{Lip}_0(X, \mathbb{C})$ inherits the norm given by the embedding

$$f \in \operatorname{Lip}_{0}(X, \mathbb{C}) \mapsto \left(\frac{f(x) - f(y)}{\|x - y\|}\right)_{(x,y) \in [X]^{2}} \in \ell_{\infty}([X]^{2}).$$

The operator space structure on Lipⁿ₀(X, C) is given by the embedding

$$f \in \operatorname{Lip}_{0}(X, \mathbb{C}) \mapsto \left(\frac{f_{n}(x) - f_{n}(y)}{\|x - y\|_{\operatorname{M}_{n}(X)}}\right)_{(x, y) \in [\operatorname{M}_{n}(X)]^{2}} \in \ell_{\infty}([\operatorname{M}_{n}(X)]^{2}, \operatorname{M}_{n}).$$

Given a set *Z*, let $[Z]^2 = \{(x, y) \in Z^2 \mid x \neq y\}.$

• $\operatorname{Lip}_0(X, \mathbb{C})$ inherits the norm given by the embedding

$$f \in \operatorname{Lip}_{0}(X, \mathbb{C}) \mapsto \left(\frac{f(x) - f(y)}{\|x - y\|}\right)_{(x,y) \in [X]^{2}} \in \ell_{\infty}([X]^{2}).$$

- The operator space structure on $\mathrm{Lip}_0^n(X,\mathbb{C})$ is given by the embedding

$$f \in \operatorname{Lip}_{0}(X, \mathbb{C}) \mapsto \left(\frac{f_{n}(x) - f_{n}(y)}{\|x - y\|_{\operatorname{M}_{n}(X)}}\right)_{(x, y) \in [\operatorname{M}_{n}(X)]^{2}} \in \ell_{\infty}([\operatorname{M}_{n}(X)]^{2}, \operatorname{M}_{n}).$$

Proposition

If $X \subset \mathcal{B}(H)$, then the canonical map

$$\iota: \mathcal{B}(H)^* \to \operatorname{Lip}_0^n(X, \mathbb{C})$$

given by $\iota(a) = a \upharpoonright X - a(x_0)$ is a complete contraction.

(a)

Given a pointed metric operator space (X, x_0) and $x \in X$, define a map

 $\delta_{\mathbf{X}} : \operatorname{Lip}_{0}(\mathbf{X}, \mathbb{C}) \to \mathbb{C}$ by letting $\delta_{\mathbf{X}}(f) = f(\mathbf{X})$

for all $f \in \operatorname{Lip}_0(X, \mathbb{C})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a pointed metric operator space (X, x_0) and $x \in X$, define a map

$$\delta_x : \operatorname{Lip}_0(X, \mathbb{C}) \to \mathbb{C}$$
 by letting $\delta_x(f) = f(x)$

for all $f \in \operatorname{Lip}_0(X, \mathbb{C})$.

So, $\delta_x \in \operatorname{Lip}_0(X, \mathbb{C})^*$ for all $x \in X$.

Image: A Image: A

Image: A mage: A ma

Given a pointed metric operator space (X, x_0) and $x \in X$, define a map

$$\delta_x : \operatorname{Lip}_0(X, \mathbb{C}) \to \mathbb{C}$$
 by letting $\delta_x(f) = f(x)$

for all $f \in \operatorname{Lip}_0(X, \mathbb{C})$.

So, $\delta_x \in \operatorname{Lip}_0(X, \mathbb{C})^*$ for all $x \in X$.

Recall that $\operatorname{Lip}_0^n(X, \mathbb{C})^*$ is an operator space for all $n \in \mathbb{N}$.

Given a pointed metric operator space (X, x_0) and $x \in X$, define a map

$$\delta_x : \operatorname{Lip}_0(X, \mathbb{C}) \to \mathbb{C}$$
 by letting $\delta_x(f) = f(x)$

for all $f \in \operatorname{Lip}_0(X, \mathbb{C})$.

So, $\delta_x \in \operatorname{Lip}_0(X, \mathbb{C})^*$ for all $x \in X$.

Recall that $\operatorname{Lip}_0^n(X, \mathbb{C})^*$ is an operator space for all $n \in \mathbb{N}$.

Definition

We define the *n*-Lipschitz-free operator space of (X, x_0) as the Banach space

$$\mathcal{F}^{n}(\boldsymbol{X}) = \overline{\operatorname{span}} \Big\{ \delta_{\boldsymbol{x}} \in \operatorname{Lip}_{0}^{n}(\boldsymbol{X}, \mathbb{C})^{*} \mid \boldsymbol{x} \in \boldsymbol{X} \Big\}$$

together with the operator space structure inherited from $\operatorname{Lip}_0^n(X, \mathbb{C})^*$.

M. Braga

< A >

Let (X, x_0) and (Y, y_0) be pointed operator metric spaces and $n \in \mathbb{N}$.

Image: A Image: A

Let (X, x_0) and (Y, y_0) be pointed operator metric spaces and $n \in \mathbb{N}$.

• The identity $\mathcal{F}(X) \to \mathcal{F}^n(X)$ is a complete isomorphism.

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Let (X, x_0) and (Y, y_0) be pointed operator metric spaces and $n \in \mathbb{N}$.

- The identity $\mathcal{F}(X) \to \mathcal{F}^n(X)$ is a complete isomorphism.
- The following map is an *n*-isometric embedding

$$\delta_X^n: x \in X \to \delta_x \in \mathcal{F}^n(X)$$

4 3 5 4 3 5 5

Let (X, x_0) and (Y, y_0) be pointed operator metric spaces and $n \in \mathbb{N}$.

- The identity $\mathcal{F}(X) \to \mathcal{F}^n(X)$ is a complete isomorphism.
- The following map is an *n*-isometric embedding

$$\delta_X^n: x \in X \to \delta_x \in \mathcal{F}^n(X)$$

• The map $v : \mathcal{F}^n(X)^* \to \operatorname{Lip}_0^n(X, \mathbb{C})$ given by $v(g) = g(\delta_x)$ is a complete isometry.

Let (X, x_0) and (Y, y_0) be pointed operator metric spaces and $n \in \mathbb{N}$.

- The identity $\mathcal{F}(X) \to \mathcal{F}^n(X)$ is a complete isomorphism.
- The following map is an *n*-isometric embedding

$$\delta_X^n: x \in X \to \delta_x \in \mathcal{F}^n(X)$$

- The map $v : \mathcal{F}^n(X)^* \to \operatorname{Lip}_0^n(X, \mathbb{C})$ given by $v(g) = g(\delta_x)$ is a complete isometry.
- For any $L \in \operatorname{Lip}_0(X, Y)$ there is a unique bounded linear map $\tilde{L} : \mathcal{F}^n(X) \to \mathcal{F}^n(Y)$ with $\|\tilde{L}\|_{\operatorname{cb}} = \operatorname{Lip}(L_n)$ and so that the following diagram commutes

$$\begin{array}{c} X \xrightarrow{L} Y \\ \delta_X^n \downarrow & \downarrow \delta_Y^n \\ \mathcal{F}^n(X) \xrightarrow{\tilde{L}} \mathcal{F}^n(Y) \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

<ロ> <同> <同> <同> < 同> < 同>

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

3

イロト イポト イヨト イヨト

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every pointed operator metric space (X, x_0) almost complete isometrically embeds into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

4 E 6 4 E 6 1

Image: A mathematical straight and the straight and th

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every pointed operator metric space (X, x_0) almost complete isometrically embeds into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

Theorem (Godefroy and Kalton, 2003)

Let X be a weakly compactly generated Banach space. Then all weakly compact subsets of $\mathcal{F}(X)$ are separable.

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every pointed operator metric space (X, x_0) almost complete isometrically embeds into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

Theorem (Godefroy and Kalton, 2003)

Let X be a weakly compactly generated Banach space. Then all weakly compact subsets of $\mathcal{F}(X)$ are separable.

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

• • • • • • • • • • • •

Back to Item II

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every pointed operator metric space (X, x_0) almost complete isometrically embeds into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

Theorem (Godefroy and Kalton, 2003)

Let X be a weakly compactly generated Banach space. Then all weakly compact subsets of $\mathcal{F}(X)$ are separable.

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

If X is nonseparable and weakly compactly generated, then X does not \mathbb{R} -isomorphically embed into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Back to Item II

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every pointed operator metric space (X, x_0) almost complete isometrically embeds into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

Theorem (Godefroy and Kalton, 2003)

Let X be a weakly compactly generated Banach space. Then all weakly compact subsets of $\mathcal{F}(X)$ are separable.

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

If X is nonseparable and weakly compactly generated, then X does not \mathbb{R} -isomorphically embed into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

There are operator spaces X and Y so that X almost completely isometrically embeds into Y but so that X does not \mathbb{R} -isomorphically embed into Y.

(日)

Back to Item II

As $\delta_X^n : x \in X \to \delta_x \in \mathcal{F}^n(X)$ is an *n*-isometric embedding, we have:

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every pointed operator metric space (X, x_0) almost complete isometrically embeds into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

Theorem (Godefroy and Kalton, 2003)

Let X be a weakly compactly generated Banach space. Then all weakly compact subsets of $\mathcal{F}(X)$ are separable.

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

If X is nonseparable and weakly compactly generated, then X does not \mathbb{R} -isomorphically embed into $(\bigoplus_n \mathcal{F}^n(X))_{c_0}$.

There are operator spaces X and Y so that X almost completely isometrically embeds into Y but so that X does not \mathbb{R} -isomorphically embed into Y.

The separable case remains open.

(日)

в.		

Э

(문) * 문

If X is an operator space, then $\delta_X^n : X \to \mathcal{F}^n(X)$ has a linear left inverse.

• □ > • □ > • □ > •

If X is an operator space, then $\delta_X^n : X \to \mathcal{F}^n(X)$ has a linear left inverse.

• Indeed, for $a_1, \ldots, a_m \in \mathbb{C}$ and $x_1, \ldots, x_m \in X$, define

$$\beta_X^n\Big(\sum_i a_i\delta_{x_i}\Big)=\sum_i a_ix_i.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

If X is an operator space, then $\delta_X^n : X \to \mathcal{F}^n(X)$ has a linear left inverse.

• Indeed, for $a_1, \ldots, a_m \in \mathbb{C}$ and $x_1, \ldots, x_m \in X$, define

$$\beta_X^n\Big(\sum_i a_i\delta_{x_i}\Big)=\sum_i a_ix_i.$$

• Given $x^* \in X^* \subset \operatorname{Lip}_0(X, \mathbb{C})$, $\left|x^*\left(\sum_i a_i x_i\right)\right| = \left|\left(\sum_i a_i \delta_{x_i}\right)(x^*)\right| \leq \left\|\sum_i a_i \delta_{x_i}\right\| \|x^*\|.$

イロト イポト イラト イラト 一戸

If X is an operator space, then $\delta_X^n : X \to \mathcal{F}^n(X)$ has a linear left inverse.

• Indeed, for $a_1, \ldots, a_m \in \mathbb{C}$ and $x_1, \ldots, x_m \in X$, define

$$\beta_X^n\Big(\sum_i a_i\delta_{x_i}\Big)=\sum_i a_ix_i.$$

• Given
$$x^* \in X^* \subset \operatorname{Lip}_0(X, \mathbb{C}),$$

 $\left|x^*\left(\sum_i a_i x_i\right)\right| = \left|\left(\sum_i a_i \delta_{x_i}\right)(x^*)\right| \leq \left\|\sum_i a_i \delta_{x_i}\right\| \|x^*\|.$

• So, β extends to a completely contractive map $\beta : \mathcal{F}^n(X) \to X$.

If X is an operator space, then $\delta_X^n : X \to \mathcal{F}^n(X)$ has a linear left inverse.

• Indeed, for $a_1, \ldots, a_m \in \mathbb{C}$ and $x_1, \ldots, x_m \in X$, define

$$\beta_X^n\Big(\sum_i a_i\delta_{x_i}\Big)=\sum_i a_ix_i.$$

• Given
$$x^* \in X^* \subset \operatorname{Lip}_0(X, \mathbb{C}),$$

 $\left|x^*\left(\sum_i a_i x_i\right)\right| = \left|\left(\sum_i a_i \delta_{x_i}\right)(x^*)\right| \leq \left\|\sum_i a_i \delta_{x_i}\right\| \|x^*\|.$

• So, β extends to a completely contractive map $\beta : \mathcal{F}^n(X) \to X$.

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Let (X, x_0) be a pointed operator metric space and Y be an operator space. For any $L \in \operatorname{Lip}_0(X, Y)$ there is a unique linear map $\overline{L} : \mathcal{F}^n(X) \to Y$ such that $L = \overline{L} \delta_X^n$ and $\|\overline{L}\|_{\operatorname{cb}} = \operatorname{Lip}(L_n)$.

-

イロト イポト イラト イラト

æ

Given a connected undirected graph, we consider it as a metric space by endowing it with the shortest path metric.

3 > < 3

Image: A mage: A ma

Given a connected undirected graph, we consider it as a metric space by endowing it with the shortest path metric.

If such a graph has no cycles, it is called a tree.

4 3 5 4 3

< A >

Given a connected undirected graph, we consider it as a metric space by endowing it with the shortest path metric.

If such a graph has no cycles, it is called a tree.

The Lipschitz-free space of a tree on k + 1 vertices can be isometrically identified with ℓ_1^k as Banach spaces.

Given a connected undirected graph, we consider it as a metric space by endowing it with the shortest path metric.

If such a graph has no cycles, it is called a tree.

The Lipschitz-free space of a tree on k + 1 vertices can be isometrically identified with ℓ_1^k as Banach spaces.

Proposition (Braga, Chávez-Domínguez, and Sinclair, 2021)

Let (T, 0) be a rooted tree with k + 1 vertices, say $T = \{0, 1, ..., k\}$. Consider the isometry $T \rightarrow \ell_1^k$ given by

$$0 \in T \mapsto 0 \in \ell_1^k$$
 and $j \in T \setminus \{0\} \mapsto \sum_{0 < i \leq j} e_i \in \ell_1^k$.

Consider T as an operator metric space with the structure induced by this isometry and the maximal operator space structure on ℓ_1^k . Then for any $n \in \mathbb{N}$, $\mathcal{F}^n(T)$ is completely isometric to $MAX(\ell_1^k)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Sketch of the proof.

Sketch of the proof.

Let $\tilde{L} : \mathcal{F}^n(T) \to MAX(\ell_1^k)$ be the linearization of $L : T \to MAX(\ell_1^k)$.

Sketch of the proof.

Let $\tilde{L} : \mathcal{F}^n(T) \to \text{MAX}(\ell_1^k)$ be the linearization of $L : T \to \text{MAX}(\ell_1^k)$. So, \tilde{L} is a bijection, $\|\tilde{L}\|_{cb} = 1$, and $\tilde{L}(\delta_0) = 0$ and $\tilde{L}(\delta_j) = \sum_{0 \le i \le j} e_i$ for all $j \in T \setminus \{0\}$.

Sketch of the proof.

Let $\tilde{L} : \mathcal{F}^n(T) \to \text{MAX}(\ell_1^k)$ be the linearization of $L : T \to \text{MAX}(\ell_1^k)$. So, \tilde{L} is a bijection, $\|\tilde{L}\|_{cb} = 1$, and $\tilde{L}(\delta_0) = 0$ and $\tilde{L}(\delta_j) = \sum_{0 \le i \le j} e_i$ for all $j \in T \setminus \{0\}$.

By the definition of MAX(ℓ_1^k),

$$\|\tilde{L}^{-1}: \operatorname{MAX}(\ell_1^k) \to \mathcal{F}^n(T)\|_{\operatorname{cb}} = \|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^n(T)|$$

Sketch of the proof.

Let $\tilde{L} : \mathcal{F}^n(T) \to \text{MAX}(\ell_1^k)$ be the linearization of $L : T \to \text{MAX}(\ell_1^k)$. So, \tilde{L} is a bijection, $\|\tilde{L}\|_{cb} = 1$, and $\tilde{L}(\delta_0) = 0$ and $\tilde{L}(\delta_j) = \sum_{0 < i \leq j} e_i$ for all $j \in T \setminus \{0\}$.

By the definition of MAX(ℓ_1^k),

$$\|\tilde{L}^{-1}: \operatorname{MAX}(\ell_1^k) \to \mathcal{F}^n(T)\|_{\operatorname{cb}} = \|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^n(T)\|$$

Clearly,

$$\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^n(T) \| \leqslant \|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^1(T)\| \cdot \|\mathrm{Id}: \mathcal{F}^1(T) \to \mathcal{F}^n(T)\|.$$

Sketch of the proof.

Let $\tilde{L} : \mathcal{F}^n(T) \to MAX(\ell_1^k)$ be the linearization of $L : T \to MAX(\ell_1^k)$. So, \tilde{L} is a bijection, $\|\tilde{L}\|_{cb} = 1$, and $\tilde{L}(\delta_0) = 0$ and $\tilde{L}(\delta_j) = \sum_{0 < i \leq j} e_i$ for all $j \in T \setminus \{0\}$.

By the definition of MAX(ℓ_1^k),

$$\|\tilde{L}^{-1}: \operatorname{MAX}(\ell_1^k) \to \mathcal{F}^n(T)\|_{\operatorname{cb}} = \|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^n(T)\|$$

Clearly,

$$\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^n(T) \| \leqslant \| \tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^1(T) \| \cdot \| \mathrm{Id}: \mathcal{F}^1(T) \to \mathcal{F}^n(T) \|.$$

From the classic setting, $\|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^1(T)\| = 1$.

Sketch of the proof.

Let $\tilde{L} : \mathcal{F}^n(T) \to \text{MAX}(\ell_1^k)$ be the linearization of $L : T \to \text{MAX}(\ell_1^k)$. So, \tilde{L} is a bijection, $\|\tilde{L}\|_{cb} = 1$, and $\tilde{L}(\delta_0) = 0$ and $\tilde{L}(\delta_j) = \sum_{0 < i \leq j} e_i$ for all $j \in T \setminus \{0\}$.

By the definition of MAX(ℓ_1^k),

$$\|\tilde{L}^{-1}: \operatorname{MAX}(\ell_1^k) \to \mathcal{F}^n(T)\|_{\operatorname{cb}} = \|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^n(T)\|$$

Clearly,

$$|\tilde{L}^{-1}:\ell_1^k\to\mathcal{F}^n(T)|\leqslant \|\tilde{L}^{-1}:\ell_1^k\to\mathcal{F}^1(T)\|\cdot\|\mathrm{Id}:\mathcal{F}^1(T)\to\mathcal{F}^n(T)\|.$$

From the classic setting, $\|\tilde{L}^{-1}: \ell_1^k \to \mathcal{F}^1(T)\| = 1$.

As $\operatorname{Lip}(f) \leq \operatorname{Lip}(f_n)$, the identity $\operatorname{Lip}_0^n(T, \mathbb{C}) \to \operatorname{Lip}_0(T, \mathbb{C})$ has norm at most 1. So, the same holds for $\operatorname{Id} : \mathcal{F}^1(T) \to \mathcal{F}^n(T)$.

The following was introduced for Lipschitz-free (Banach) spaces by Godefroy and Kalton in 2003:

< D > < P > < E > < E</p>

The following was introduced for Lipschitz-free (Banach) spaces by Godefroy and Kalton in 2003:

Definition

Let *X* be an operator space and $n \in \mathbb{N}$. We say that *X* has the *n*-isometric Lipschitz-lifting property if there exists a linear *n*-contraction $T : X \to \mathcal{F}^n(X)$ such that $\beta_X^n T = \text{Id}_X$.

・ 同 ト ・ ヨ ト ・ ヨ

The following was introduced for Lipschitz-free (Banach) spaces by Godefroy and Kalton in 2003:

Definition

Let *X* be an operator space and $n \in \mathbb{N}$. We say that *X* has the *n*-isometric Lipschitz-lifting property if there exists a linear *n*-contraction $T : X \to \mathcal{F}^n(X)$ such that $\beta_X^n T = \text{Id}_X$.

Theorem (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every separable operator space has the n-isometric Lipschitz-lifting property for all $n \in \mathbb{N}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The following was introduced for Lipschitz-free (Banach) spaces by Godefroy and Kalton in 2003:

Definition

Let *X* be an operator space and $n \in \mathbb{N}$. We say that *X* has the *n*-isometric Lipschitz-lifting property if there exists a linear *n*-contraction $T : X \to \mathcal{F}^n(X)$ such that $\beta_X^n T = \text{Id}_X$.

Theorem (Braga, Chávez-Domínguez, and Sinclair, 2021)

Every separable operator space has the n-isometric Lipschitz-lifting property for all $n \in \mathbb{N}$.

Theorem (Braga, Chávez-Domínguez, and Sinclair, 2021)

If a separable operator space X almost completely isometrically embeds into an operator space Y, then X almost completely \mathbb{R} -linearly isometrically embeds into Y.

э

The norm in $\mathcal{F}^n(X)$ is given in a dual way and it is in terms of a supremum.

The norm in $\mathcal{F}^n(X)$ is given in a dual way and it is in terms of a supremum.

Can we get a more direct formula?

The norm in $\mathcal{F}^n(X)$ is given in a dual way and it is in terms of a supremum.

Can we get a more direct formula?

• In the classic setting, if $\mu \in \operatorname{span}\{\delta_X\}_{X \in X} \subset \mathcal{F}(X)$, then

$$\|\mu\|_{\mathcal{F}(X)} = \inf \Big\{ \sum_{i=1}^{k} |a_i| d(x_i, y_i) | \mu = \sum_{i=1}^{k} a_i (\delta_{x_i} - \delta_{y_i}) \Big\}.$$

イロト イポト イラト イラ

The norm in $\mathcal{F}^n(X)$ is given in a dual way and it is in terms of a supremum.

Can we get a more direct formula?

• In the classic setting, if $\mu \in \operatorname{span}\{\delta_X\}_{X \in X} \subset \mathcal{F}(X)$, then

$$\|\mu\|_{\mathcal{F}(X)} = \inf \bigg\{ \sum_{i=1}^k |a_i| d(x_i, y_i) | \mu = \sum_{i=1}^k a_i (\delta_{x_i} - \delta_{y_i}) \bigg\}.$$

Theorem (Braga, Chávez-Domínguez, and Sinclair, 2021)

For any $m \in \mathbb{N}$ and $\mu \in M_m(\text{span}\{\delta_x\}_{x \in X})$ we have

$$\|\mu\|_{\mathbf{M}_m(\mathcal{F}^n(\boldsymbol{X}))} = \inf\left\{\|\alpha\|\|\beta\|\max_{1 \le \ell \le N} |\boldsymbol{C}_\ell|\|[\boldsymbol{x}_{ij}^\ell - \boldsymbol{y}_{ij}^\ell]\|\right\}$$

where the infimum is taken over all $N \in \mathbb{N}$ and all representations $\mu = \alpha \cdot D \cdot \beta$ where $\alpha \in M_{m,Nn}$ and $\beta \in M_{Nn,m}$, and $D \in M_N(M_n(F))$ is a diagonal matrix whose diagonal entries are of the form $c_{\ell}[\delta_{x_{\ell}^{\ell}} - \delta_{y_{\ell}^{\ell}}]_{ij}$.

Differentiability

æ

<ロ> <同> <同> <同> < 同> < 同>

Theorem (Heinrich and Mankiewicz, 1982)

Let X and Y be Banach spaces and X be separable. If X Lipschitzly embeds into Y^* , then X \mathbb{R} -isomorphically embeds into Y^* .

∃ → < ∃</p>

< 🗇 🕨

Theorem (Heinrich and Mankiewicz, 1982)

Let X and Y be Banach spaces and X be separable. If X Lipschitzly embeds into Y^* , then X \mathbb{R} -isomorphically embeds into Y^* .

Recall: A map $f : X \to Y^*$ is **Gateaux** w^* - \mathbb{R} -differentiable at $x \in X$ if for all $a \in X$ the limit

$$D^* f_x(a) = w^* - \lim_{\lambda \to 0} \frac{f(x + \lambda a) - f(x)}{\lambda}$$

exists and the map $D^* f_x : a \in X \mapsto D^* f_x(a) \in Y^*$ is \mathbb{R} -linear and bounded.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (Heinrich and Mankiewicz, 1982)

Let X and Y be Banach spaces and X be separable. If X Lipschitzly embeds into Y^* , then X \mathbb{R} -isomorphically embeds into Y^* .

Recall: A map $f : X \to Y^*$ is **Gateaux** w^* - \mathbb{R} -differentiable at $x \in X$ if for all $a \in X$ the limit

$$D^* f_x(a) = w^* - \lim_{\lambda \to 0} \frac{f(x + \lambda a) - f(x)}{\lambda}$$

exists and the map $D^* f_x : a \in X \mapsto D^* f_x(a) \in Y^*$ is \mathbb{R} -linear and bounded.

If X and Y are separable, a Lipschitz function $u : X \to Y^*$ is Gateaux w^* - \mathbb{R} -differentiable "almost everywhere" (Heinrich and Mankiewicz, 1982).

æ

(日) (四) (日) (日) (日)

• If $D^* f_x(a)$ exists, lower w^* -continuity of the norm easily gives $||D^* f_x|| \leq \operatorname{Lip}(f)$ and $||(D^* f_x)_n||_n \leq \operatorname{Lip}(f_n)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• If $D^* f_x(a)$ exists, lower w^* -continuity of the norm easily gives $||D^* f_x|| \leq \operatorname{Lip}(f)$ and $||(D^* f_x)_n||_n \leq \operatorname{Lip}(f_n)$.

Indeed, if $[a_{ij}] \in M_n(X)$ then $D^* f_x([a_{ij}])$ is in $M_n(Y^*) = CB(Y, M_n)$. So, $\|D^* f_x([a_{ij}])\|_{cb}$ equals

$$\sup\Big\{\lim_{\lambda\to 0}\Big\|\Big[\Big\langle b_{pq},\frac{f(x+\lambda a_{ij})-f(x)}{\lambda}\Big\rangle\Big]\Big\|_{nk}\mid k\in\mathbb{N}, [b_{pq}]\in B_{M_k(Y)}\Big\}.$$

• If $D^* f_x(a)$ exists, lower w^* -continuity of the norm easily gives $||D^* f_x|| \leq \operatorname{Lip}(f)$ and $||(D^* f_x)_n||_n \leq \operatorname{Lip}(f_n)$.

Indeed, if $[a_{ij}] \in M_n(X)$ then $D^* f_x([a_{ij}])$ is in $M_n(Y^*) = CB(Y, M_n)$. So, $\|D^* f_x([a_{ij}])\|_{cb}$ equals

$$\sup\Big\{\lim_{\lambda\to 0}\Big\|\Big[\Big\langle b_{pq}, \frac{f(x+\lambda a_{ij})-f(x)}{\lambda}\Big\rangle\Big]\Big\|_{nk} \mid k\in\mathbb{N}, [b_{pq}]\in B_{M_k(Y)}\Big\}.$$

So,

$$\|D^* f_x([a_{ij}])\|_{cb} \leq \lim_{\lambda \to 0} \frac{1}{\lambda} \cdot \|f_n([x + \lambda a_{ij}]) - f_n([x])\|_n$$
$$\leq \operatorname{Lip}(f_n) \cdot \|[a_{ij}]\|_n.$$

• If $D^* f_x(a)$ exists, lower w^* -continuity of the norm easily gives $||D^* f_x|| \leq \operatorname{Lip}(f)$ and $||(D^* f_x)_n||_n \leq \operatorname{Lip}(f_n)$.

Indeed, if $[a_{ij}] \in M_n(X)$ then $D^* f_x([a_{ij}])$ is in $M_n(Y^*) = CB(Y, M_n)$. So, $\|D^* f_x([a_{ij}])\|_{cb}$ equals

$$\sup\Big\{\lim_{\lambda\to 0}\Big\|\Big[\Big\langle b_{pq}, \frac{f(x+\lambda a_{ij})-f(x)}{\lambda}\Big\rangle\Big]\Big\|_{nk} \mid k\in\mathbb{N}, [b_{pq}]\in B_{M_k(Y)}\Big\}.$$

So,

$$\|D^* f_x([a_{ij}])\|_{cb} \leq \lim_{\lambda \to 0} \frac{1}{\lambda} \cdot \|f_n([x + \lambda a_{ij}]) - f_n([x])\|_n$$

$$\leq \operatorname{Lip}(f_n) \cdot \|[a_{ij}]\|_n.$$

Hence, $||(D^*f_x)_n||_n \leq \operatorname{Lip}(f_n)$.

æ

(日) (四) (日) (日) (日)

• In the Banach space setting, the difficulty is to show that $\|(D^*f_x)^{-1}\| \leq \operatorname{Lip}(f^{-1}).$

Image: A Image: A

• In the Banach space setting, the difficulty is to show that $\|(D^*f_x)^{-1}\| \leq \operatorname{Lip}(f^{-1}).$

This is also the part of the proof that does not straightforwardly extend to operator spaces.

▲ 同 ▶ → (三) →

• In the Banach space setting, the difficulty is to show that $\|(D^*f_x)^{-1}\| \leq \operatorname{Lip}(f^{-1}).$

This is also the part of the proof that does not straightforwardly extend to operator spaces.

For operator spaces, its necessary to find a "nice" subset $F \subset X$ for which $x \in F \mapsto D^* f_x(a) \in Y^*$ is continuous.

() <) <)
 () <)
 () <)
</p>

Image: A math

• In the Banach space setting, the difficulty is to show that $\|(D^*f_x)^{-1}\| \leq \operatorname{Lip}(f^{-1}).$

This is also the part of the proof that does not straightforwardly extend to operator spaces.

For operator spaces, its necessary to find a "nice" subset $F \subset X$ for which $x \in F \mapsto D^* f_x(a) \in Y^*$ is continuous.

Theorem (Braga, Chávez-Domínguez, and Sinclair, 2021)

Let X and Y be operator spaces and X be separable. If X almost completely Lipschitzly embeds into Y^* , then X almost completely \mathbb{R} -isomorphically embeds into Y^* .

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

< <p>I > < </p>

Given a C-Banach space X, the conjugate of X is denoted by X, i.e., X = X as a set and the scalar multiplication on X is given by α ⋅ x = ᾱx for all α ∈ C and all x ∈ X.

- Given a \mathbb{C} -Banach space X, the **conjugate of** X is denoted by \overline{X} , i.e., $\overline{X} = X$ as a set and the scalar multiplication on \overline{X} is given by $\alpha \cdot x = \overline{\alpha}x$ for all $\alpha \in \mathbb{C}$ and all $x \in \overline{X}$.
- Given a C-operator space Y ⊂ B(H), Y denotes the conjugate operator space of Y, i.e., Y = Y and its operator space structure is given by the canonical inclusion Y ⊂ B(H) = B(H).

- Given a \mathbb{C} -Banach space X, the **conjugate of** X is denoted by \overline{X} , i.e., $\overline{X} = X$ as a set and the scalar multiplication on \overline{X} is given by $\alpha \cdot x = \overline{\alpha}x$ for all $\alpha \in \mathbb{C}$ and all $x \in \overline{X}$.
- Given a C-operator space Y ⊂ B(H), Y denotes the conjugate operator space of Y, i.e., Y = Y and its operator space structure is given by the canonical inclusion Y ⊂ B(H) = B(H).

Proposition (Braga, Chávez-Domínguez, and Sinclair, 2021)

If a \mathbb{C} -operator space X almost completely \mathbb{R} -isomorphically embeds into a \mathbb{C} -operator space Y, then X almost completely \mathbb{C} -isomorphically embeds into Y $\oplus \overline{Y}$.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

- Given a \mathbb{C} -Banach space X, the **conjugate of** X is denoted by \overline{X} , i.e., $\overline{X} = X$ as a set and the scalar multiplication on \overline{X} is given by $\alpha \cdot x = \overline{\alpha}x$ for all $\alpha \in \mathbb{C}$ and all $x \in \overline{X}$.
- Given a C-operator space Y ⊂ B(H), Y denotes the conjugate operator space of Y, i.e., Y = Y and its operator space structure is given by the canonical inclusion Y ⊂ B(H) = B(H).

Proposition (Braga, Chávez-Domínguez, and Sinclair, 2021)

If a \mathbb{C} -operator space X almost completely \mathbb{R} -isomorphically embeds into a \mathbb{C} -operator space Y, then X almost completely \mathbb{C} -isomorphically embeds into Y $\oplus \overline{Y}$.

Corollary (Braga, Chávez-Domínguez, and Sinclair, 2021)

Let X and Y be operator spaces and assume that X almost completely Lipschitzly embeds into Y^{*}. Then X almost completely \mathbb{C} -linearly embeds into Y^{*} $\oplus \overline{Y}^*$.

Thanks!

э

ъ

Thanks!

(and now I am going back to bed...)

B. M. Braga

Nonlinear geometry of operator spaces

April 21st, 2021 39/39

< A